Week 10: Regression discontinuity designs

Marcelo Coca Perraillon

University of Colorado
Anschutz Medical Campus

Health Services Research Methods |
HSMP 7607
2020

These slides are part of a forthcoming book to be published by Cambridge
University Press. For more information, go to perraillon.com/PLH. (©This

material is copyrighted. Please see the entire copyright notice on the book'’s
website.

perraillon.com/PLH

Outline

Review of RD design and assumptions
Parametric estimation

RDD and complete lack of overlap

Examples

Nonparametric estimation: -Ipoly- and -rdrobust-
Detour on instrumental variables (1V)

Fuzzy RDD as IVs

Features

m The key feature of RDD is that there is a continuous variable X; that
determines who gets treatment, denoted by D; (1 if treated). By convention
X is called the running variable, the assignment variable or the forcing
variable

m In sharp RDD, a unit is treated if X; >= c and not treated if X; < c. That
is, D; is a deterministic function of X;: D; = f(X;). The running variable
completely determines who gets treatment

m We must observe X and know the cutoff or threshold ¢

m In fuzzy RDD, we can think of D as a random variable given X, but
E[D;|X; = c] is known to be discontinuous at c. Note that
E[D,|X, = C] = Pr[D,- = 1|X, = C]

m In fuzzy RDD £(X;) is not a deterministic function of X;; other variables
affect treatment assignment, some of them could be unobserved

m Said another way, in fuzzy RDD X at c is a predictor of who gets treatment
but it does not completely determines treatment assignment

Identification

m One assumption of RDD is that it requires the continuity of X for
identification, although in practice some RDD studies have used discrete
running variables. The continuity of X is required because identification is at
the limit

m A comparison of lim,_,E[Yi|Xi = x] and lim,.E[Yi|Xi = x] would provide
an estimate of treatment effects (note the direction of the arrows)

m The above is equivalent to: lim,_,.E[Yi|Xi = x, D; = 0] and
limy E[Yi|Xi = x, D; = 1] since in this example to right the right of ¢
everybody gets treatment; to the left nobody does

m So:
limy—cE[Yi|Xi = x] = E[Y0;|X; = ¢] and
limy cE[Yi|Xi = x] = E[Y1;|X; =]

m Remember that Yp; and Yj; is the potential outcome notation. See Hahn et
al. (2001) for details

Assumptions

m The most important exclusion restriction assumption is the so-called
no-manipulation-with-precision assumption

m The identification of treatment effects is based on X being like a
“randomizer” around c. Imagine that X is a uniform random variable used to
assign treatment. If X >= ¢, a unit receives treatment

m In RDD, X has the same role except that we don't assume that X is
independent of the outcome Y. In most applications, X and Y are correlated
in some form and must condition on it

m However, if ¢ is not arbitrary or has a deterministic relationship to Y or if
units could —with precision— determine their scores X and thus choose to
receive treatment or not, then X around c is not like a randomizer anymore —
there is some form of self-selection that could depend on unobservables

m In part, it is testable. Units wouldn't look similar close to ¢ and there would
be “heaping” close to c. However, we can't rule out manipulation with
precision with data — we must argue for it with subject knowledge (it's an
exclusion restriction)

Estimation

One key issue with estimation in sharp RDD is that we have complete lack
of overlap

m Remember, overlap requires that 0 < P(D; = 1|X;) < 1 for the domain of X;

m In the domain of the running variable X;, this is clearly not satisfied. In sharp
RDD, P(D; =1|X;<c)=0and P(D;=1|X >=¢) =1

m Remember the issue with lack of overlap. We rely on extrapolation to
estimate treatment effects

m Said another way, we may not be able to correctly estimate treatment effects
if we get the functional form Y; = f(X;) wrong

m The problem is we never know if we get it right or not, so model specification
is a key issue in RDD estimation. The problem screams for a nonparametric
estimation method

m We will use both, parametric and nonparametric methods (or semiparametric)

Estimation

m The other key and related estimation issue is that the identification of
treatment effects is at X; — ¢ (at the limit)

m The more observations we use far away from ¢ on X the more we rely on
extrapolation and functional form assumptions

m The closer we get to ¢ the better, but then we may not have enough sample
sizes

m It's a bias-variance trade-off: closer to ¢, less bias and more variance; farther
way, more bias but less variance

m We will see some optimal bandwidth methods. The idea is to restrict the
estimation to a window around X; = ¢, which can be of different sizes to the
left or the right

Interpretation

m In RDD, treatment effects are local average treatment effects or LATE

m We don't estimate the effect of getting the treatment, but rather the effect
of getting the treatment for units that were close to ¢, not everybody in the
sample (that’s the “local” part)

m In a sense, this is the price we pay for being able to estimate treatment
effects. However, in some applications, we might actually be interested in
this particular group and not others

m In fuzzy RDD, we need to talk about the “complier” or the “marginal
patient” or “marginal unit”

Example of positive treatment effect

m Simulated data with ¢ = 140 and window (100, 180)

Outcome (Y)

400 600 800

200

Pand A

1000

0 50 100 140 18
Test Score (X}

No effect

Panel B

180

140

100
Test Score (X))

50

T T T T T
oooL 008 D08 00 0OE 0
{A) 2woano

10

Extrapolation
Dashed lines are extrapolations. If real-life example were like this, life would be
easier: perfect linear relationship, so extrapolation is not a problem

Qutcome (Y)
400 600 800

200

T T T T
0 50 100 150 200 250
Test Score (X)

A bit more realistic

m True relationship is non-linear, but we use a linear model and incorrectly find
a positive treatment effect

Qutcome (Y)

0 50 100 150 200 250
Test Score (X)

Parametric estimation

m Linear relationship between Y and X: Y; = By + 51D; + B33X; + ¢;

m D; =1 if subject i received treatment and D; = 0 otherwise. We can also
write this as D; = 1(X; > ¢) or D; = 1x,>]
m We can center center the running variable at c:

Yi = PBo+ 1D+ B3(Xi —c) +¢€

m We have:
E[Y:|D; = 1,X; = c] = Bo + B1 and E[Y;|D; = 0,X; = c] = fo, s0:
E[Y:|Di=1,X =] - E[Vi|D; = 0,X; = c] = A

m Note that in Y; = So + 51 D; + 83X + €; there is no interaction between X

and D so the effect of D does not depend to the value of X. In the above
models, f; is the same

Parametric estimation

m If we add an interaction, we have:
Y = ag + a1 D; +Ol2(X,' - C) +043(X,' — C) x D;i +n;
m Now «; is the treatment effect at X; = csinceat X;=c, Xi—c=0. If

asz # 0, then the treatment effect at some other point could be different, but
we care about the treatment effect at the discontinuity

m As we saw with some examples, the assumption of a linear relationship
between Y and X is strong and limiting. We could relax it

m To keep the notation simpler, let X= (X — ¢). The model then becomes:
Yi = ag 4+ a1 Dj + o X; + a3 X; x D; + n;

m We could add a quadratic term to relax the linear assumption:
Y = ag + a1 D; +a2X +a3X2+a4X x D; +a5X2 x D;i + n;

m We could add polynomials of higher order. That used to be the usual
recommendation

Parametric estimation

m Gelman and Imbens (2019) pointed our several problems and recommend
using only polynomials up to the second degree (quadratic)
m They justify the approach in three ways:

m Polynomials impose “weights” that can be noisy with polynomials of higher
order (the average treatment effect is a weighted function of X)

m Estimates can be sensitive to the degree of the polynomial

m Confidence intervals don't have good coverage with higher order polynomials

m See their article for more examples

m Of course, all these arguments are specification error type of arguments since
a priori we do not know the correct functional form

Covariates

m If the assumptions of RDD hold, then all observed and unobserved covariates
are balanced and we don't need to include them

m In practice, we often include the most relevant confounders. The model is
then

mY =ap+aD;+ OQ)N(,' + 053)?,-2 + Oz4)?,' x Dj + (15)?,-2 X Di + Zivy + n;

m It's also possible to extend the model to accommodate treatment
heterogeneity by interacting D with one of the variables in Z

m Of course, we don’t need to assume that Y is normally distributed
conditional on covariates. We can relax that assumption and estimate other
type of models (any of the GLM models, for example)

Testing assumptions

m Besides checking that the balance around the cutoff point is good, there is
another way of verifying that the assumptions are met

m There shouldn’t be any discontinuity on the covariates
m So we can do the same RDD analysis for each of the continuous baseline
covariates to verity that they are not discontinuous at X; = ¢

m If we see a discontinuity in a covariate, that may imply that the discontinuity
in the outcome is due to a discontinuity in a confounder and not a treatment
effect

m Graphical presentations of this analysis are helpful. It's the same analysis we
will below for the outcome, but we replace the outcome with each continuous
covariate in Z

Data

m We will start with an example from Lee, Moretti, and Butler (2004)

m Forcing variable is Democratic vote share. If ¢ > 50% then the Democratic
candidate wins. Outcome is a liberal voting score from the Americans for
Democratic Action (ADA)

m Do candidates who are elected in close elections tend to moderate their
congressional voting? In this example, LATE is what they authors wanted

m Nowadays the research question is kind of funny. Moderation is so last
century

describe score demvoteshare age sex medianincome pcturban pctblack

storage display value

variable name type format label variable label
score float %9.0g

demvoteshare float %9.0g

age int %8.0g

sex byte %10.0g Vo

medianincome double %12.0g P107A001
pcturban float %9.0g

petblack float %9.0g

Stats

m Some basics stats

* Treatment variable

gen d=
replace d =

sum demvoteshare age sex medianincome pcturban pctblack if

1

0 if demvoteshare < 0.5

Variable | Obs Mean Std. Dev. Min Max
demvoteshare | 8,097 727859 .1670382 5002307 1
age | 8,068 51.85957 10.77453 26 88
sex | 8,068 1.035821 .185854 1 2
medianincome | 5,659 11209.68 6305.193 1968 33404
pcturban | 5,659 . 7462079 .244452 177 1.000002
pctblack | 5,659 .1341779 .1587711 0 .9205155

sum demvoteshare age sex medianincome pcturban pctblack if d==0
Variable | Obs Mean Std. Dev. Min Max
demvoteshare | 5,480 .3663305 .1064886 0 .499875
age | 5,371 51.96518 10.02428 27 86
sex | 5,375 1.035349 .1846771 1 2
medianincome | 3,599 12002.9 7014.439 2085 33404
pcturban | 3,599 .6660516 2154873 .171 1.000002
pctblack | 3,599 .05652526 .0764815 0 .542022

Closer to cutoff point

m See how the balance improves; notice some missing data. We could use
standardized differences to check balance

m Balancing covariates close to cutoff point when one can argue no precise
manipulation can be very convincing (not as propensity score “magic”)

sum demvoteshare age sex medianincome pcturban pctblack if d==1 & (demvoteshare>.40 & d
> emvoteshare<.60)

Variable | Obs Mean Std. Dev. Min Max
demvoteshare | 2,204 .5484703 0288765 .5002307 .5997699
age | 2,188 48.64762 10.40249 26 87

sex | 2,188 1.031993 1760208 1 2
medianincome | 1,460 10691.14 5931.001 2608 30726
pcturban | 1,460 .7109719 2302929 .193 1.000002
pctblack | 1,460 .0751407 .0914119 [.889344

sun demvoteshare age sex medianincome pcturban pctblack if d==0 & (demvoteshare>.40 & d
> emvoteshare<.60)

Variable | Obs Mean Std. Dev. Min Max
demvoteshare | 2,428 .4502578 .0283787 4000038 .499875
age | 2,354 51.34749 10.4509 27 83

sex | 2,358 1.025869 .1687792 1 2
medianincome | 1,303 10335.45 5845.274 2085 29850
pcturban | 1,303 .6469805 .212883 171 1.000002

petblack

1,303 .0633695 .0849373 0 .542022

Scatterplot
n Note0u5ncontested elections; see how the bulk of observations shifts after
c=0.

scatter score demvoteshare, msize(tiny) xline(0.5) xtitle("Democrat vote share") ytitle("ADA score")
graph export leel.png, replace

150
L

100
1

ADA score
50

P —————

-50
)

0 2 A4 6 .8 1
Democrat vote share

21

Scatterplot with jittering

m When there are too many observations on top of each, jittering helps a lot

scatter score demvoteshare, msize(tiny) xline(0.5) xtitle("Democrat vote share") ///
ytitle("ADA score") jitter(5)
graph export lee_j.png, replace

o
2
o
8-
1
i
8|k
Sols:
P
[m) HY
< .
o
o
2
T
0 2 4 6 8 1

Democrat vote share

22

Smoothing
m Smoothing is helpful to see trends; in RDD we will use it later to estimate
models (but not with lowess because of bad boundary properties)
m Remember, lowess is estimating a “local” conditional expectation E[Y;|X;]

capture drop lowess_y_dl lowess_y_d0
lowess score demvoteshare if d ==1, gen (lowess_y_d1) nograph bw(0.5)
lowess score demvoteshare if d ==0, gen (lowess_y_dO) nograph bw(0.5)

scatter score demvoteshare, msize(tiny) x1ine(0.5) xtitle("Democrat vote share") ///
ytitle("ADA score") || ///
line lowess_y_dl demvoteshare if democrat
line lowess_y_dO demvoteshare if democrat ==
title("Lowess")

graph export lee_lowess.png, replace

sort color(red) |1 ///
, sort color(red) legend(off) ///

Lowess

ADA score
50 100 150
L ! L

0
L

-50

4 6
Democrat vote share

23

Things to note

m There is large effect at ¢, so whatever we do will probably result in a positive
treatment effect

m Going back to the research question, in close elections, candidates do not
moderate their vote. The authors concluded that voter chose “policies”
rather than

m Around c, the function is flat, which suggests that not controlling for the
running variable would fit well

m Sometimes researchers choose other ways of showing the raw data, in
particular if there are a lot of data points

m | like to see the variability and all the data, but less common in published
papers

m One option is to “bin” the data like in a histogram to calculate E[Y;|X]] in
bins defined by X; values

24

cmogram

m User written command -cmogram- estimates “binned” E[Y/]

m The lines are polynomials of second order estimated using the binned data
(afit option). Note that a flat line would be better, but we force the
quadratic function. It's an assumption

cmogram score demvoteshare, cut(.5) scatter line(.5) gfit
graph export lee_binned.png, replace

—
)]

Mean of score
40
!

I

I

I

I

I

I

I

I

.' ° I

» o |

°

e e e

o® e :

° I

I

° I

o | I
N T T T L T T T
0 2 4 8 1

demvoteshare

25

cmogram with lowess

m Now smoothed with lowess again. Remember, with parametric models, model

specification is an assumption. Repeat after me...

qui cmogram score demvoteshare, cut(.5) scatter line(.5) lowess ///
title("Lowess trend")
graph save cmlowes.gph, replace

Lowess trend
T

91

65

Mean of score
40
!

14
® e
[)
°

°

-12

demvoteshare

26

Parametric model - linear f(X) using all data

m Linear relationship between Y and X. Model is
Y = ag + a1 D; —l—Otz(X,' — C) —|—OL3(X,' — C) x D; + n;

reg score i.d##c.x_c, robust

Linear regression Number of obs = 13,577
F(3, 13573) = 4160.73
Prob > F = 0.0000
R-squared = 0.4344
Root MSE = 24.544
| Robust

score | Coef. Std. Err. t P>It| [95% Conf. Intervall
1.d | 55.43136 .6373768 86.97 0.000 54.18201 56.68071
x_c | -5.682785 2.609124 -2.18 0.029 -10.79703 -.5685406

|

d#c.x_c |
| -55.15188 3.217652 -17.14 0.000 -61.45893 -48.84484

|

|

16.81598 .4184826 40.18 0.000 15.9957 17.63627

Parametric model - linear f(X) using all data
m Always plot your models! Note how the estimated line depends on data away
from c. Remember, the line is minimizing the error from each of the point

(the sum of square errors)

predict double yhatml if e(sample)

scatter score demvoteshare, msize(tiny) x1ine(0.5) xtitle("Democrat vote share") ///
ytitle("ADA score") || ///
line yhatml demvoteshare if democrat ==1, sort color(red) || ///
line yhatml demvoteshare if democrat ==0, sort color(red) legend(off) ///
title("Linear")

graph export lee_xc.png, replace

Linear

50 100 150
L L L

ADA score

0

-50
L

4 .
Democrat vote share
28

Parametric model - quadratic f(X) using all data

m (X) is now quadratic. Model is

Y = ag + a1 D; —|-042)~<;—|—043)?,-2 —I—Oz4)~<,' x D

reg score i.d##(c.x_c##c.x_c), robust

+ 015)?,'2 x Di +m;

Linear regression Number of obs = 13,577
F(5, 13571) = 2589.02
Prob > F = 0.0000
R-squared = 0.4559
Root MSE = 24.075
| Robust
score | Coef. Std. Err. t P>lt| [95% Conf. Interval
1.d | 44.40229 .9086222 48.87 0.000 42.62126 46.18331
x_c | -23.8496 6.710943 -3.55 0.000 -37.00398 -10.69522
|
c.x_c#c.x_c | -41.72017 14.67192 -2.84 0.004 -70.48817 -12.97018
|
d#c.x_c |
11 111.8963 9.779383 11.44 0.000 92.72733 131.0652
|
d#c.x_c#c.x_c |
1 | -229.9544 19.53577 -11.77 0.000 -268.2472 -191.6615
|
_cons | 15.60635 .5747061 27.16 0.000 14.47984 16.73285

29

Parametric model - quadratic f(X) using all data
m Note that we force the curvature. Is this right? We do not know. We could
compare fit using in the usual way (Wald test, BIC, etc). In the previous
slide, quadratic seems to fit ok

predict double yhatm2 if e(sample)
scatter score demvoteshare, msize(tiny) x1ine(0.5) xtitle("Democrat vote share") ///

ytitle("ADA score") || ///
line yhatm2 demvoteshare if democrat ==1, sort color(red) || ///
line yhatm2 demvoteshare if democrat ==0, sort color(red) legend(off) ///
title("Quadratic")
graph export lee_xc2.png, replace

Quadratic

50 100 150
L L L

ADA score

0

-50
L

4 .
Democrat vote share
30

Parametric model - quadratic restricted to window

m We now do not use all data; we focus on a bandwidth h around c of 0.1. At
this point, it's an arbitrary window, but it could be based on a comparison of
balance for different windows

reg score i.d##(c.x_c##c.x_c) if (demvoteshare>.40 & demvoteshare<.60), robust

Linear regression Number of obs = 4,632
F(5, 4626) = 1132.17
Prob > F = 0.0000
R-squared = 0.5549
Root MSE = 21.327
| Robust
score | Coef. Std. Err. t P>t [95% Conf. Intervall
1.d | 45.9283 1.851157 24.81 0.000 42.29915 49.55745
x_c | 38.63987 54.10772 0.71 0.475 -67.43706 144.7168
|
c.x_c#c.x_c | 295.1722 513.8466 0.57 0.566 -712.2123 1302.557
|
d#c.x_c |
| 6.507425 88.6282 0.07 0.941 -167.2461 180.261
|
d#c.x_c#c.x_c |
1 | -744.0247 867.1782 -0.86 0.391 -2444.108 956.0581
|
cons | 17.71198 1.183657 14.96 0.000 165.39145 20.03251

31

Parametric model - quadratic, bandwidth: h = .10
m Note that the curvature is not as noticeable since we don’t use observations
far away from c. Based on Wald tests, the quadratic terms are not necessary
when restricted the estimation to this window

predict double yhatm2_w if e(sample)

scatter score demvoteshare, msize(tiny) x1ine(0.5 0.4 0.6) xtitle("Democrat vote share") ///
ytitle("ADA score") || ///
line yhatm2_w‘’ demvoteshare if democrat ==1, sort color(red) || ///
line yhatm2_w demvoteshare if democrat ==0, sort color(red) legend(off) ///
title("Quadratic around window")

graph export lee_xc2_w.png, replace

Quadratic around window

100 150
| I

ADA score
50
L

4 6
Democrat vote share

Parametric model - linear restricted to window

m Maybe not even linear? Drop the running variable? That's what the Wald
tests suggest

reg score i.d##c.x_c if (re>.40 & d hare<.60), robust
Linear regression Number of obs = 4,632
F(3, 4628) = 1886.70
Prob > F = 0.0000
R-squared = 0.5548
Root MSE = 21.324
| Robust
score | Coef. Std. Err. t P>It| [95% Conf. Intervall
1.d | 47.15915 1.217625 38.73 0.000 44.77203 49.54628
x_c | 9.421594 13.05183 0.72 0.470 -16.16621 35.0094
|
d#c.x_c |
| -9.127629 21.92807 -0.42 0.677 -52.1171 33.86184
|
|

17.22656 . 7556057 22.80 0.000 15.74521 18.70791

Parametric model - no running variable restricted to
window

m Even if it seems strange, that's is the best fitting model, which agrees with
the lowess graph

m Compare R? with the previous model

reg score i.d if (demvoteshare>.40 & demvoteshare<.60), robust

Linear regression Number of obs = 4,632
F(1, 4630) = 5630.09
Prob > F = 0.0000
R-squared = 0.5548
Root MSE = 21.32
| Robust
score | Coef. Std. Err. t P>Itl [95% Conf. Intervall
1.d | 47.64205 .6349402 75.03 0.000 46.39727 48.88684

_cons | 16.75791 .3765671 44.50 0.000 16.01966 17.49616

Parametric model - no running variable restricted to

window o .
m Not including the running variable is the same as assuming a “flat”

relationship between E[Y] and X. In other words, E[Y] is mean independent
of X since E[Y] = E[Y|X] for all values of X. Yes, it's an assumption

predict double yhatflat_w if e(sample)
scatter score demvoteshare, msize(tiny) x1ine(0.5 0.4 0.6) xtitle("Democrat vote share") ///
ytitle("ADA score") || ///
line yhatflat_w‘’ demvoteshare if democrat ==1, sort color(red) || ///
line yhatflat_w demvoteshare if democrat ==0, sort color(red) legend(off) ///
title("Not including running variable in model")
graph export lee_flat.png, replace

Not including running variable in model

100 150
! L

50
|

ADA score

0

-50

0 2 4 6 8 1 35
Democrat vote share

Big picture

m Any parametric model makes an assumption about the functional form
between X and Y

m If we thought that other covariates Z; should be added to the model, we
could repeat this same exercise but then graphs would need to be adjusted

m Our final parametric model ended up being the simplest one
m The best model depends on whether we use all the observations or not

m The window is of course a very important consideration. We want to
make sure that observed covariates are well balanced

m We should try other windows in sensitivity analyses, but we will see “optimal”
windows as well

m You can imagine that with less robust results you can find different results
depending on models

36

Example adding a covariate - adjusted graph
m -margins- a bit cumbersome here so we will do it “by hand”

reg score i.d##(c.demvoteshare##c.denvoteshare) pcturban, robust
* Save mean of pcturban
qui sum pcturban
scalar mu = r(mean)
preserve
* Hold pcturban at mean
replace pcturban = scalar(mu)
predict double yhatadj if e(sample)

, sort color(red) |l ///
, sort color(red) legend(off) ///

line yhatadj demvoteshare if democrat
line yhatadj demvoteshare if democrat
x1ine(0.5) ylabel(-50(50)150)
graph export adj.png, replace
restore

100 150

)

Fitted values

-50

4 6
demvoteshare

37

Nonparametric

m Going back to the beginning. The issue with RDD estimation is that we need
to get 7(X;) right, but every single parametric model we try makes an
assumption about the shape of f(X;)

m So rather than making assumptions about f(X;) we could estimate models in
which we don’t assume a specific functional form — the data drives the shape,
which is what lowess showed us

m Lowess has poor boundary properties. RDD estimation is at X — ¢, and c is
a boundary. We saw this in the first homework (or second?)

m We will use instead Kernel-weighted local polynomial smoothing (command
-Ipoly-) since it's easier to understand, but it has many limitation as it is

m We will then move to what has now become the standard implementation for
RDD using the user-written -rdrobust- command, which estimates similar
nonparametric models

38

Kernel-weighted local polynomial smoothing, Ipoly

m With nonparametric methods, the idea is to let the data tell us the shape of
E[Y;|Xi] rather than imposing specification assumptions like we did in the
parametric version

m Say we have Y;, X; data usually represented as pairs {(x1, 1), .., (X, ¥n)}

m We want to estimate a model like y; = m(x;) + o(x;)e;, but we do not want
to assume any functional form for m(x;)

m This is similar to linear regression. We can make E[e;] = 0 and var(e;) = 1 so
we have that E[y;|x; = xo] = m(xo), where xq is some point € X;

m Said in simpler terms, for each point xg we want to find the “smoothed”
Elyi|xi = xo] = m(xo), which is of course the conditional mean of y; at
Xi = Xp

m -Ipoly-, like -lowess-, estimates m(xp) using a weighted polynomial regression

39

Kernel-weighted local polynomial smoothing, Ipoly

The “local” part is that for each point xg only data around X is used defined
by the bandwidth h

The smoothed y; is a prediction y; resulting from this regression (the
intercept)
For intuition, forget about the weight/kernel for a second and imagine doing
this:
1 Choose a point xp. Use only data around xp, say xi and xu»
2 Run a polynomial linear regression, say, of degree 2:
i = Bo + Bi(xi — x0) + B2(xi — x0)® + € if xip < X < Xup
3 The smoothed J; is Mi(xo) = fo (it's the mean at xo since we center at xp)
4 Repeat for every single point in x. The result is not a parameter but rather a
new grid or pairs {(x1, 1), ...(Xn, ¥n) }
This close to the idea behind Ipoly, but it's the kernel that defines, based on
the bandwdith, the observations used

By default -Ipoly- creates a new grid that is equally spaced like binning in
cmogram. We can, and will, change this option to compute the smoothed
treatment effect at x; = ¢

40

Kernel-weighted local polynomial smoothing, Ipoly

The kernel part is that the regression in 2) is a weighted regression (like what
we did with IPW)

The weight is the kernel. The most commonly used kernel is the triangular
kernel that gives more weight to points close to xg. The rectangular kernel
gives same weight to observations. The default is the Epanechnikov kernel

The kernel is a function K(*722). Let's define z = %2¢, so K(z). The
numerator is the distance from the point we want to smooth; the
denominator is the bandwidth

With a rectangular kernel, K(z) =1/2 if |z| < 1 and 0 otherwise
With a triangular kernel, K(z) =1 — |z| if |z] < 1 and 0 otherwise

m The bandwidth h determines which observations are used because if an

observation is far away from xp, the weight is zero

With a rectangular kernel, the weight is always the same. With a triangular
kernel, the weight is larger if closer to xp

With rectangular and triangular: if hx"‘ < 1, the observation is included.

So it is included if |x; — xo| < h, which defines x;, and x,p,

41

Kernel-weighted local polynomial smoothing, Ipoly

We can choose the order of polynomials

Bandwidth selection procedures are automated using a Rule of Thumb
(ROT) algorithm, but one can choose the bandwidth as well

Larger bandwidth h produces a “smoother” curve since more observations are
used

The bottom line is that we use n parametric, weighted regression
models to obtain “smoothed” local predictions y; = rfi(x;) that we call
nonparametric estimates of E[y;|x; = xo]. The default is

n = min = (N,50) regressions

In RDD, we don't care about smoothing all data, we care about estimates at
the cutoff point

So we will use this method to estimate E[y;|x; = ¢, D; = 1] and
E[y;\x; =C, D,' = 0]

42

Ipoly example

m Smoothing with second degree polynomials
m Check out the new grid variables x0, sdem0, x1, and sdeml (see next

slide)

1poly score demvoteshare if democrat == 0, nograph kernel(triangle) gen(x0 sdem0) ///
bwidth(0.1) degree(2)
1poly score demvoteshare if democrat == 1, nograph kernel(triangle) gen(xl sdeml) ///
bwidth(0.1) degree(2)
scatter sdeml x1, color(red) msize(small) msymbol(o) || scatter sdem0 x0, msize(small) msymbol(o) color(red) ///

xline(0.5,1style(dot)) legend(off) xtitle("Democratic vote share") ytitle("ADA score")
graph export lee_lpoly.png, replace

Q]
=]

60
1

ADA score
40

20

4 6
Democratic vote share

43

Ipoly example

m Remember, no parameter of interest is estimated even though we did used N
parametric regressions to get m(x;) = ¥;

m The original data is {(x1, y1), --., (Xn, ¥»)} and now we have a new grid
{(x{,%1) -, (X, ¥n) }, where J; is the smoothed y;

m We saved the new grid using the gen() option in variables x0, sdem0, x0, and

sdemO

m Remember, by default, Ipoly uses an equally spaced grid to divide the x axis,

much like cmogram:

. list x0 sdem0 x1 sdeml in 1/5

x0

sdem0

x1

sdeml

0
.01020153
02040306
.03060459
.04080613

[NETECIN

16.273488
13.828991
12.661728
14.445168
12.304093

.50023067
.51043004
.52062942
.53082879
.54102817

65.160334
64.363744

64.24728
64.335256
64.393172

44

Ipoly example

m We can obtain the treatment effect but saving the smoothed values at the
cutoff point x; = ¢ = 0.5

m Again, by default Ipoly builds an equally spaced grid to calculate E[y;|xi]],
but we can change that with the “at” option (we could, for example, ask
-Ipoly- to calculate E[y;|x;] at each of the observed values)

m We need to define a variable with cutoff point (the “at” option takes a
variable)

gen forat = 0.5 in 1

capture drop sdem0 sdeml

1poly score demvoteshare if democrat == 0, nograph kernel(triangle) gen(sdem0) degree(2) ///
at(forat) bwidth(0.1)

lpoly score demvoteshare if democrat == 1, nograph kernel(triangle) gen(sdeml) degree(2) ///
at(forat) bwidth(0.1)

gen dif = sdeml - sdem0

list sdeml sdem0 dif in 1/1

| sdem1 sdem0 dif |
| |
| 65.190977 19.275926 45.91505 |

1.

m So treatment effect at ¢ is 45.91

m Think about this for a second. We are using all the data, but the estimate at
¢ here is local because of h. So in this sense, we are not using data far away

from c to estimate the treatment effect at x; = ¢
45

See how bandwidth matters

m Changing bandwidth, from 0.01 to 0.40. Polynomial degree 1. More
curvature with higher degree polynomials

m In general, the choice of bandwidth h is more important (or makes more of a
difference) than the choice of kernel and the order of the polynomial
m gray is the smallest h; orange the largest

capture drop smoothdemO* smoothdemi* xO% x1*
local co O
foreach i in 0.01 0.05 0.1 0.20 0.30 0.40 {
local co = ‘co’ +1
1poly score demvoteshare if democrat == 0, nograph kernel(triangle) gen(x0‘co’ smoothdemO‘co’) ///
bwidth(‘i’) degree(2)
1lpoly score demvoteshare if democrat
bwidth(¢i’) degree(2)

1, nograph kernel(triangle) gen(xl‘co’ smoothdeml‘co’) ///

}
line smoothdemO1 x01, msize(small) color(gray) sort || line smoothdemil x11, sort color(gray) || ///
line smoothdem02 x02, color(black) sort || line smoothdemi2 x12, sort color(black) || ///
line smoothdem03 x03, color(red) sort || lime smoothdemi3 x13, sort color(red) || ///
line smoothdem04 x04, color(blue) sort || line smoothdemld x14, sort color(blue) || ///
line smoothdem05 x05, color(green)sort || lime smoothdemi5 x15, sort color(green)|| ///
line smoothdem06 x06, color(orange) sort || line smoothdeml6 x16, sort color(orange) ///

x1ine(0.5,1style(dot)) legend(off) xtitle("Democratic vote share") ytitle("ADA score") ///
title("Bandwidths: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4")
graph export lee_dif_bws.png, replace

46

Different bandwidths for the smoothing
m Think about how this would matter at ¢ if the mass of points were not so
stable

Bandwidths: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4

80
1

60
1

ADA score
40

0 2 4 .6 .8 1
Democratic vote share

47

Big picture

The above examples highlights how a nonparametric approach to estimating
RDD works, but it's not that helpful beyond a graphical representation

We need statistical inference, which means that we need a way to estimate
standard errors that allow us to test hypotheses and build confidence
intervals (we could get Cls with Ipoly; by default the bandwidth is 1.5 larger
to calculate SEs; p = 1/1.5 = 0.667). Since rii(xp) is the intercept, we
actually do have SEs

We would also want the capability to incorporate covariates so estimates of
treatment effect could be more efficient

One criticism of nonparametric methods is that we replace one set of
assumptions (about model specification) for other assumptions: bandwidth?
What degree of polynomials? Assumptions about SEs?

Much of the work on nonparametric methods is about optimal ways of
choosing bandwidths, smoothing parameters, and estimating SEs (variances)
All these features are part of the -rdrobust- command described in Calonico,
Cattaneo, Farrell, and Titiunik (2017)

Plus -rdrobust- implemented a data-driven RDD bandwidth selection around

Xj=¢C
48

rdrobust

rdrobust score demvoteshare, c(0.5) h(0.1) p(2)
Sharp RD estimates using local polynomial regression.

Cutoff ¢ = .5 | Left of ¢ Right of ¢ Number of obs = 13577
BW type = Manual
Number of obs | 5480 8097 Kernel = Triangular
Eff. Number of obs | 2428 2204 VCE method = NN
Order est. (p) | 2 2
Order bias (q) | 3 3
BW est. (h) | 0.100 0.100
BW bias (b) | 0.100 0.100
rho (h/b) | 1.000 1.000
Outcome: score. Running variable: demvoteshare.
Method | Coef. Std. Err. z P>|z| [95% Conf. Intervall
Conventional | 45.915 1.717 26.7410 0.000 42.5497 49.2804
Robust | - - 19.8261 0.000 40.9024 49.8766

. count if (demvoteshare>.40 & demvoteshare<.60)
4,632

. di 2428 + 2204

4632

m Cls are robust to heteroskedasticity and can accommodate clustering as well

m The default kernel is triangular. | used polynomials of degree 2 to smooth.
Note that we obtain the same estimate of treatment effect (45.915) “by
hand"”

m rdrobust uses one bandwidth for the treatment effect and another for the
robust variance, although now we are forcing it to use the same: 0.10, BW
est.(b) and BW bias (b)

rdrobust

m We can ask rdrobust to find the optimal bandwidths that are data driven in
the sense that they optimize the bias-variance trade-off (the mean square
error to be more precise) given the data

m The default is the same bandwidth on each side of the cutoff point (could be
different). Note that the optimal bandwidth, 0.13, is not that different than
the one we have been using

rdrobust score demvoteshare, c(0.5) p(2) bwselect(mserd)
Mass points detected in the running variable.

Sharp RD estimates using local polynomial regression.

Cutoff ¢ = .5 | Left of ¢ Right of ¢ Number of obs = 13577
BW type = mserd
Number of obs | 5480 8097 Kernel = Triangular
Eff. Number of obs | 3197 2965 VCE method = NN
Order est. (p) | 2 2
Order bias (q) | 3 3
BW est. (h) | 0.136 0.136
BW bias (b) | 0.185 0.185
rho (h/b) | 0.732 0.732
Unique obs | 2770 3351
Outcome: score. Running variable: demvoteshare.
Method | Coef. Std. Err. z P>zl [95% Conf. Intervall
Conventional | 46.227 1.4598 31.6675 0.000 43.3661 49.0882
Robust | - - 27.5319 0.000 42.7683 49.3242

Estimates adjusted for mass points in the running variable.

50

rdrobust

m The bandwidth depends on the smoothing model

m Now we use polynomial of degree 1 (linear). Bandwidth is now smaller, 0.086

. rdrobust score demvoteshare, c(0.5) buselect(mserd)
Mass points detected in the running variable.

Sharp RD estimates

using local polynomial regression.

Cutoff ¢ = .5 | Left of ¢ Right of ¢ Number of obs = 13577
BW type = mserd
Number of obs | 5480 8097 Kernel = Triangular
Eff. Number of obs | 2112 1895 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.086 0.086
BW bias (b) | 0.141 0.141
rho (h/b) | 0.609 0.609
Unique obs | 2770 3351
Outcome: score. Running variable: demvoteshare.
Method | Coef. Std. Err. z P>|z| [95% Conf. Intervall
Conventional | 46.491 1.2405 37.4775 0.000 44.06 48.9227
Robust | - - 31.4254 0.000 43.2929 49.0524

Estimates adjusted

for mass points in the running variable.

51

Plots

m rdrobust implement plots using a combination of tools we saw before

m It does create bins rather than plotting the raw data in the same way we did
it with cmogram, but using a different algorithm

m The plots match the nonparametric treatment effect estimates and the
smoothing model

m As usual, we can customize the plot (see graph_options()) but we will use the
defaults here

52

rdplot

m Same syntax as rdrobust

rdplot score demvoteshare, c(0.5) h(0.10) p(2)
RD Plot with evenly spaced mimicking variance number of bins using spacings estimators.

Cutoff ¢ = .5 | Left of ¢ Right of c Number of obs = 13577

Kernel = Uniform
Number of obs | 5480 8097
Eff. Number of obs | 2428 2204
Order poly. fit (p) | 2 2
BW poly. fit (h) | 0.100 0.100
Number of bins scale | 1.000 1.000

Outcome: score. Running variable: demvoteshare.

| Left of ¢ Right of c

Bins selected | 146 123
Average bin length | 0.003 0.004
Median bin length | 0.003 0.004
IMSE-optimal bins 9 26
Mimicking Var. bins | 146 123
Rel. to IMSE-optimal: |

Implied scale | 16.222 4.731

WIMSE var. weight | 0.000 0.009
WIMSE bias weight | 1.000 0.991

graph export rdplot2.png, replace

rdplot

Regression function fit

8 4
- .
L]
o | .'-
5] . L] LA
°
r ade” S
\ o‘ﬁ
o -:'h a,, et A
© .
l. see o
. “ .
o | L] []
<t []
. .
g_ . ?:F‘z.‘~.' ™
. 'o‘ﬁ .c sestierT
*% o0q o .
o e @
.
2 4 B8 8

* Sample average within bin

Polynomial fit of order 2

54

rdplot

m Restrict to bandwidth

rdplot score demvoteshare if 0.4 <= demvoteshare & demvoteshare <= 0.6, c(0.5) h(0.1) p(2)
graph export rdplot2_1.png, replace

Regression function fit

8 . L[]
L]
. . o,
e " g:o !'-. coe .o.o '.f. :
3 oot :.n .\. %es *°
° o N L4
[]
o |
<
o |
I3
o -
T T T T
4 45 5 .55 B
© Sample average within bin ~—— Polynomial fit of order 2

55

Covariates

m An important feature of the new -rdrobust- package is that covariates can be

added

m Covariates should not change the estimate of treatment effects since they
should be balanced (so not confounders), but estimation could be more
efficient (smaller SEs) —could be noisier too

m Below, we add two and let rdrobust choose the optimal bandwidth. Again,
the bandwidth is data driven so it depends on the smoothing model.
Bandwidth happened to be 0.106

. rdrobust score demvoteshare, c(0.5) bwselect(mserd) covs(pcturban pctblack)
Mass points detected in the running variable.

Covariate-adjusted sharp RD estimates using local polynomial regression.

Cutoff ¢ = .5 | Left of c Right of c Number of obs = 9248
BW type = mserd
Number of obs | 3599 5649 Kernel = Triangular
Eff. Number of obs | 1347 1550 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.106 0.106
BW bias (b) | 0.162 0.162
rho (h/b) | 0.654 0.654
Unique obs | 1728 2394
Outcome: score. Running variable: demvoteshare.
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
Conventional | 45.229 1.4315 31.5952 0.000 42.4233 48.0348
Robust | - - 26.1661 0.000 41.927 48.7166

56

Matching other results

m We can match treat

ment effect estimates using Ipoly and rdrobust

polynomial of 1 degree (linear) now

capture drop sdem0 sdeml forat dif

gen forat = 0.5 in 1

1lpoly score demvoteshare if democrat ==
at(forat) bwidth(0.1)

1poly score demvoteshare if democrat ==
at(forat) bwidth(0.1)

gen dif = sdeml - sdem0

list sdeml sdem0O dif in 1/1

0, nograph kernel(triangle) gen(sdem0) degree(1) ///

1, nograph kernel(triangle) gen(sdem1) degree(1) ///

sdeml sdem0 dif

|
|
1. | 64.101309 17.415352 46.68596

rdrobust score demvoteshare, c(0.5) h(0

-1 p(1)

Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
Conventional | 46.686 1.1428 40.8525 0.000 44.4461 48.9258
Robust | - - 26.7410 0.000 42.5497 49.2804

. Both use

57

Matching other results Il

m Same bandwidth for both. Below h = 0.15, so with triangular kernel
obserbations with |x; — ¢| < h have nonzero weight

capture drop sdem0 sdeml forat dif

lpoly score demvoteshare if democrat == 0, nograph kernel(triangle) gen(sdem0) degree(1) ///
at(forat) bwidth(0.15)

1poly score demvoteshare if democrat
at(forat) bwidth(0.15)

gen dif = sdeml - sdem0

list sdeml sdem0 dif in 1/1

1, nograph kernel(triangle) gen(sdeml) degree(1) ///

sdeml sdem0 dif |

|
| |
1. | 64.312993 17.147009 47.16599 |

rdrobust score demvoteshare, c(0.5) h(0.15)

Outcome: score. Running variable: demvoteshare.

Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional | 47.166 .93435 50.4800 0.000 45.3347 48.9973
Robust | - - 33.5370 0.000 43.7645 49.1974

Important: rdrobust is really a parametric method
given a bandwidth

m Given a bandwidth h, rdrobust is really a parametric model weighted by the
kernel. To see this, let's use a rectangular kernel (uniform), which gives the
same weight to all observations. See how results below match

rdrobust score demvoteshare, c(0.5) h(0.10) kernel(uniform) p(1)

Outcome: score. Running variable: demvoteshare.

Method | Coef. Std. Err. z P>|z| [95% Conf. Intervall
Conventional | 47.159 1.0432 45.2066 0.000 45.1145 49.2038
Robust | - - 28.6039 0.000 42.7813 49.0753

reg score i.d##c.x_c if demvoteshare >= (0.5-0.10) & demvoteshare <= (0.5+0.10), robust

| Robust

score | Coef. Std. Err. t P>It| [95% Conf. Intervall
1.d | 47.15915 1.217625 38.73 0.000 44.77203 49.54628
x_c | 9.421594 13.05183 0.72 0.470 -16.16621 35.0094

|

d#tc.x_c |
| -9.127629 21.92807 -0.42 0.677 -52.1171 33.86184

|

- |

17.22656 . 7556057 22.80 0.000 15.74521 18.70791

Important: rdrobust is really a parametric
given a bandwidth

m Same adding covariates

rdrobust score demvoteshare, c(0.5) h(0.10) kernel(uniform) p(1) covs(pcturban pctblack)

Outcome: score. Running variable: demvoteshare.

Method | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
Conventional | 44.869 1.3179 34.0464 0.000 42.2859 47.4518
Robust | - - 22.1095 0.000 41.6342 49.7338

Covariate-adjusted estimates. Additional covariates included: 2

reg score i.d##c.x_c pcturban pctblack if demvoteshare >= (0.5-0.10) & demvoteshare <= (0
> .5+0.10), robust

| Robust

score | Coef. Std. Err. t P>t [95% Conf. Intervall
1.d | 44.86885 1.532883 29.27 0.000 41.86313 47.87456
_c | -2.511174 16.33057 -0.15 0.878 -34.53255 29.51021

|

d#tc.x_c |
1 | 27.79169 26.45986 1.05 0.294 -24.09145 79.67484

|
pcturban | 31.08685 1.791139 17.36 0.000 27.57474 34.59896
pctblack | -63.18889 5.592308 -11.30 0.000 -74.15443 -52.22335
_cons | 2.106124 1.448386 1.45 0.146 -.7339069 4.946155

method

60

Limitations, other things

m Helpful to explore the sensitivity of estimates to model specification using
nonparametric methods

m In this example, not much difference, but in other situations it could be a
world of difference between parametric and nonparametric, which could
mean model specification issues or just a lot of noise in the data

m When there is more noise than signal, different models will produce difference
answers, in magnitude, direction, and statistical significance

m Nonparametric methods are not always better; they do have many underlying
assumptions. They are less efficient when the parametric model is right.
Problem is only in simulations we know for sure what is the “right” model

m No way to test for treatment heterogeniety with current nonparametric
models. We could estimate stratified models, not as efficient as interactions

m Summary is that we should try both and be concerned when results
differ (and try to figure out why)

61

Fuzzy RDD, instrumental variables detour

m If we randomize people into groups using a uniform random variable U, U is
an unconditional randomizer. It works because U is uncorrelated in any
functional form with any observed and unobserved covariate and also the
outcome (it's random)

m In RDD the forcing variable X is like a conditional randomizer but only
close to cutoff point ¢ and we must condition for X. It's conditional
because it's like the example of conditional randomization when we use the
values of a variable —severity— to randomize people into treatments. The key
difference is that RDD induces a discontinuity — every single person is given
treatment if X; > ¢

m The idea behind an instrumental variable approach is that the instrument Z
acts like a psuedo “randomizer” in the sense that Z is a strong predictor of
treatment but it must be conditional independent of the outcome

m The “conditional independent of the outcome” part is the exclusion
restriction, or the assumption that must be argued and in practice is so
difficult to determine with clarity

62

Encouragement design

m Let's go back to the example of an encouragement design. The idea is to
randomly assign people into two groups and then encourage one group to
receive a treatment or intervention (say, to receive regular preventive services)

m In this setting, randomization is about encouragement not actually receiving
treatment. If we compare an outcome Y in both groups, we would obtain an
estimate of encouraging people to do something, not an estimate of receiving
the treatment. That is, intent-to-treat (ITT)

m You can imagine that there are different types of people. No matter what you
do, some do not want to go to the doctor (never-takers), while other people
are very concerned about their health and will get preventive services
regardless of what you tell them (always-takers)

m Then there is a group of people whose behavior can be changed. After the
encouragement, they decide to follow the recommendation. These are the
compliers

m Finally, there could be contrarians: they do the opposite of what they are
told. We must rule them out

63

Encouragement design

Randomization ensures that the distribution of the type of people is
the same in the treatment and control group

Other than ITT, the estimate of treatment effect we could obtain is on the
compliers, sometimes called the “complier average treatment effect” or the
LATE

Keep in mind that in this setting nothing prevents people in the control
group to get preventive services. The always-takers will in fact get preventive
services. The never-takers in the control group will not. But the compliers
may not because we have not encourage them to do so, although some could
do it anyway

When we think about counterfactuals, the control group can only provide a
conterfactual for the compliers: what would have happened if the treated had
not been encouraged to be treated. That's why we can only obtain LATE for
the compliers

In this example, the randomizer (instrument) was actually the random
treatment assignment: it's a strong predictor of receiving treatment and is
uncorrelated with outcomes

64

Estimation

m Our target of estimation is not the effect of encouraging people to receive
preventive services but rather the effect of receiving preventive services on an
outcome Y/, say a measure of health status

m We will denote prevention services as P (say preventive doctor visits). The
causal, population model we care about is
Yi=Po+ B1Pi+e

m In the above model, P and ¢ are correlated since we know that P is also
correlated with being randomized into the encouragement group, which we
denote with a dummy variable Z;. What we don’t observed are factors that
explain who would follow the recommendation and go visit the doctor. This
is the unobserved selection. If we add Z to the above model, its coefficient
would be 0 because of randomization (this becomes important later)

m If we compare E[Y;|Z; = 1] — E[Y;|Z; = 0] we would be estimating the
average difference in health status between the group that was encouraged to
received treatment and the group that was not encouraged (ITT)

m Intuitively, the piece that is missing is that in both groups people could have
received preventive services, the actual treatment. So we could “weight” ITT
by the (average) difference in preventive differences services received by each
group: E[P;|Z; = 1] — E[P;|Z; = 0]

65

Estimation and intuition

m It turns out that this is actually the estimator we want:

B — E[Yi|Z=1]-E[Yi|Zi=0]
1 = EPR[Z=1-E[P|Z=0]

m The above estimator is called the Wald estimator (introduced in the context
of measurement error models; see AP page 127)

m If in both groups prevention services received are the same, then the
denominator is zero and the treatment effect is infinity

m With a small difference, 31 could get very large. In words, being randomized
into the encouragement group is not a strong predictor of receiving treatment
(this is what is called a weak instrument)

m If more people in the control group actually received treatment, then the
treatment effect would flip signs

m If being randomized into the encouragement group makes a difference in
receiving preventive services (strong predictor), the difference
E[Pi|Z; = 1] — E[P;|Z; = 0] would be large. We "adjust” or weight the
numerator by more

m Again, this new estimate only applies to the compliers, because the

encouragement only worked on this “local” set of participants (hence, LATE)
66

Estimation, more general

m In a more general case without covariates and with a possibly continuous
instrument Z, we can think of a system of equations:
1 Pi=act+aiZi+¢
2 Yi=vy+mnPi+n
m In the first equation, we estimate how the instrument Z predict the
treatment P

m The second equation is the outcome equation, which we know we can't
estimate as is because P is not random, there is selection (ignorability fails).
We don’t know what factor explain why people decided to get preventive
services; these factors are likely unobserved

m What we do is exploit the fact that we know there is an
external /exogenous/randomizer factor Z, which we called the instrument,
that strongly predicts who gets prevention services and because it's a
randomizer we assume it is not related to the outcome. Another way people
say this is something like “we exploit the variability in P induced by Z"

m The system of equations can be estimated using two-stage least squares
(2SLS) or using structural model equations (SEM). In 2SLS, predictions from
model 1) are used to estimate model 2: Y; =y + 1P + ;i

67

Assumptions

m Again, with the more general setting:
1 PP=ac+o1Zi+e¢
2 Yi=vy+mnPi+n
m One assumption is that the instrument Z must be uncorrelated with both €
and 7, which amounts to assuming ignorability of the instrument and the
exclusion restriction that says that the only way the instrument affects the
outcome is through the treatment

m We are safe when the instrument is randomization since randomization is not
related to the outcome (treatment assignment is random)

m It's very hard to come up with instruments in the wild. In some cases,
controlling for variables could give us conditional ignorability and make the
exclusion restriction hold (or hold “better"), so we would add a vector of
variables X in both regressions

68

Estimation |l

Here is one way we could derive the instrument in the more general setting of
Z continuous, following Gelman, Hill, and Vehtari (2020). We can rewrite:

1 PP=ac+o1Zi+e¢

2 Yi=y+nPi+7nZ+n
Since we assume the exclusion restriction, 2 = 0 in equation (2) (think
about it, this is important. It's only zero if P is in the model). Our goal is
to obtain ; accounting for selection on unobservables contained in 7

Now plug in equation (1) into equation (2):
Yi = +nlao + 01Z;) + 722 + 1i = (0 + 1na0) + (0171 +12)Zi + 1 (3)

We could rewrite (3) as Y; = (1 + 52Z; + €;, which we could estimate using
_ ; _ Ba—
the data. Here, 8, = (171 + 72), which means v, = ZTJQ
Since we know -, = 0 due to the exclusion restriction, we are left with
_ B
M=

And that's the 2SLS estimate, similar to the Wald estimate with a binary
instrument. Note that ay is the coefficient of Z in (1). If close to zero, we
have a weak instrument. 3, is the ITT

Note how we get a different estimate, y22sed — 52 _ 22 if the exclusion

o . %1 ar’
restriction in fact doesn’t hold o

Back to fuzzy RDD

m The connection with fuzzy RDD is straightforward

m The assignment variable X at the cutoff point ¢ (the instrument) must be a
strong predictor of receiving treatment; that’s the first condition

m If the RDD assumptions hold, around X; = ¢, conditioning on the running
variable X;, the exclusion restriction holds too: the only way the instrument
affects the outcome is through the treatment

m In this sense, the assumptions of fuzzy RDD are milder than the assumptions
of IV (see Hahn et al., 2001)

m Estimation follows IV in parametric approaches
m -rdrobust- estimates nonparametric fuzzy RDD with the option fuzzy()

m Remember that the key insight is that we are exploiting the fact that the
discontinuity in X; = c is a strong predictor of treatment, which we must
assume is not related to the outcome Y (only through treatment). Absence a
treatment, there would have been continuity

70

There is much more to it

m More details next semester. The world of IV is vast...

m For an application of IVs when the instrument is randomization, see Baicker
et al. (2013) describing Medicaid’'s Oregon experiment

71

