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Outline

More on transformations

Taking the log

The retransformation problem

Other transformations
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Logarithms

A very common transformation is to take the log of either the
outcome or some of the predictors

We saw in the homework that taking the log(wage) significantly
improved the model fit in the beauty example

Taking the log of the outcome is often done to make model
assumptions fit better; taking the log of predictors is often done for
model interpretation

In particular, the log of skewed data looks more normally distributed

A note on notation: We use log and ln interchangeable. That’s the
logarithm with base e

If in different base, usually noted. Like: log10(x)
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Compare wages vs log(wages)

hist wage, kdensity saving(w1.gph, replace)

hist lwage, kdensity saving(lw1.gph, replace)

graph combine w1.gph lw1.gph

graph export wvslw.png, replace
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The transformation helps with model fit

In the beauty dataset we saw that taking the log(wage) improved the
fit by a lot. For simplicity consider just one predictor, experience

reg wage exper

est sto m1

reg lwage exper

est sto m2

----------------------------------------------

Variable | m1 m2

-------------+--------------------------------

exper | .09140614*** .01523377***

_cons | 4.6425183*** 1.3814481***

-------------+--------------------------------

r2 | .05505228 .09397574

ll | -3691.0204 -1069.9606

----------------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001

In case you missed it. We just changed the scale of y and now the
model fits much better. We have not done anything else!
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log(y) interpretation

One problem though is that now the coefficients are changes in the
log(wage) scale but we care about wages, not log(wages)

The model is log(wage) = β0 + β1exper + ε, where experience is
measured in years

We can of course interpret β1 as the change in average log(wage) for
an extra year of experience

A shortcut for interpretation is that the percent change in wage is
100 ∗ β1∆exper . For a one year change in education: 100 ∗ β1

This works because log(x1)− log(x0) approximates (x1−x0)
x0

for small
changes in x (the proof requires using the first order Taylor
expansion)

With other covariates you you’d just need to add the “holding other
factors constant” or “taking the other variables into account”
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log(y) interpretation

The model again

reg lwage exper

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(1, 1258) = 130.48

Model | 41.8173212 1 41.8173212 Prob > F = 0.0000

Residual | 403.162651 1,258 .320479055 R-squared = 0.0940

-------------+---------------------------------- Adj R-squared = 0.0933

Total | 444.979972 1,259 .353439215 Root MSE = .56611

------------------------------------------------------------------------------

lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

exper | .0152338 .0013336 11.42 0.000 .0126174 .0178501

_cons | 1.381448 .0290495 47.55 0.000 1.324457 1.438439

------------------------------------------------------------------------------

An additional year of experience increases average wage by
approximately 1.5%
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Econ digression: elasticity

Expressing changes in terms of percentages is near and dear to
economists because it is related to the concept of elasticity

What happens to the demand of iWatches when the price increases?
What about table salt? Comparing a 1 unit change in price doesn’t
make much sense because prices are different. Salt is about super
cheap; iWatches are expensive

Instead, use a common metric for both: percent changes

Elasticity = ε = ∆y
∆x

x
y = %∆y

%∆x

So the elasticity is the percent change in y for a percent change in x.
(By the way, salt is more inelastic than an iWatch)

What does this have to do with log transformations?
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Using logs to get elasticity

If we take the log of both y and x we can interpret the parameter
of x as an elasticity

For example, in the model: log(wage) = β0 + β1log(educ) + ε

A 1% change in years of education changes wages in by β1 ∗ 100
percent

The proof is a bit complicated (you need to take the implicit
derivative); only valid for small changes

These models are not that common in HSR but are much more
common in economics
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Retransformation problem

Back to the more common case of taking the log of the outcome y.
Sometimes called the log-level model

We just saw the shortcut but we may not care about the percent
change in y but rather the effect of x on the average y

There is a problem that is often called the retransformation
problem in the health economics literature

The earliest recognition of this problem was in the RAND health
insurance experiment by Duan, Manning and Co

See Duan (1983) and Manning (2001)
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Not an innocent transformation

A lot more happens when we take the log of the outcome

Suppose we have log(y) = β0 + β1x1 + β2x2 + β3x3 + ε

We can solve for y by taking the e() on both sides

We end up with: y = e(β0+β1x1+β2x2+β3x3+ε). We can rewrite as:

y = eβ0 × eβ1x1 × eβ2x2 × eβ3x3 × eε

A non-linear model with multiplicative error. The effect of one
variable depends on the value of the others. The effect of X1 for
example, is:
∂y
∂x1

= exp(β0)× exp(β1x1)× exp(β2x2)× exp(β3x3)× exp(ε)× β1

The other problem is that E [log(y)] 6= log(E [y ]). If the we take the
exponent of the predicted log(ŷ) we are not going to get E [ŷ ]
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Retransformation problem

Easy to see the problem with a very simple model

reg lwage abvavg

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(1, 1258) = 0.05

Model | .019425671 1 .019425671 Prob > F = 0.8148

Residual | 444.960547 1,258 .353704727 R-squared = 0.0000

-------------+---------------------------------- Adj R-squared = -0.0008

Total | 444.979972 1,259 .353439215 Root MSE = .59473

------------------------------------------------------------------------------

lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | -.0085364 .0364256 -0.23 0.815 -.079998 .0629252

_cons | 1.661394 .0200826 82.73 0.000 1.621995 1.700793

------------------------------------------------------------------------------

The model is log(wage) = β0 + β1abvavg + ε. For those of below
average looks it’s just log(wage) = β0. If we take the exponent of
both sides: wage = exp(β0)

But this is actually NOT the average wage for those of below average
looks: E [wage|abvavg = 0] 6= exp(β0)
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Retransformation problem

Verify

qui reg lwage abvavg

* below average looks

di exp(_b[_cons])

5.2666493

* above average

di exp(_b[_cons] + _b[abvavg])

5.2218825

* Actual for below average

sum wage if e(sample) & abvavg ==0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

wage | 877 6.286306 4.214598 1.02 38.86

* Actual above average

sum wage if e(sample) & abvavg ==1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

wage | 383 6.353368 5.554582 1.16 77.72

Underestimated in both cases even in the simplest of models
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Retransformation problem

Again, this happens for a rather simple reason: E [log(x)] 6= log(E [x ])
or the expected value of log(x) is not the same as the log of the
expected value

So just taking the exponent function doesn’t work

Actually, it turns out that what the log-level model is giving you is
the geometric mean rather than the arithmetic mean

The geometric mean is defined as (
∏n

i=1 xi )
1
n

For example, the geometric mean of 2,3,4 is 3
√

2 ∗ 3 ∗ 4
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Retransformation problem

Check that this is the case by using the ameans command

ameans wage if e(sample) & abvavg ==0

Variable | Type Obs Mean [95% Conf. Interval]

-------------+---------------------------------------------------------------

wage | Arithmetic 877 6.286306 6.006984 6.565627

| Geometric 877 5.266649 5.063633 5.477805

| Harmonic 877 4.414825 4.233009 4.612961

-----------------------------------------------------------------------------

ameans wage if e(sample) & abvavg ==1

Variable | Type Obs Mean [95% Conf. Interval]

-------------+---------------------------------------------------------------

wage | Arithmetic 383 6.353368 5.795311 6.911425

| Geometric 383 5.221882 4.917211 5.545432

| Harmonic 383 4.398983 4.142901 4.68881

-----------------------------------------------------------------------------
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Retransformation problem

Interestingly enough, this problem was not apparent until the RAND
health insurance experiment

So we know what is the problem, but what is the solution?
Remember, we would like to be able to interpret the coefficients in
the wage scale, not the log(wage) scale. We want to understand
what is the effect of covariates on E [wage]

Duan (1983) proposed a smearing factor, which turns out depends
on whether the errors are heteroskedastic or not

In the simplest case of homoskedastic errors the smearing factor is the
exponent of the of residuals:

smearing = 1
n

∑n
i=1 e

(ly−l̂y) =
∑n

i=1 e
ê , where ly is to emphasize that

we use log(y) not y

You will learn more about it in Methods II because modeling costs is
a key issue in HSR
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Retransformation problem

Simple smearing factor

* Estimate model again

qui reg lwage abvavg

* Residual

predict lres if e(sample), res

* Exponentiate

gen lresexp = exp(lres)

* Smearing

sum lresexp

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

lresexp | 1,260 1.20062 .888256 .1936715 14.88352

* Apply factor

* below average looks

di (exp(_b[_cons]))*r(mean)

6.3232467

* above average

di (exp(_b[_cons] + _b[abvavg]))*r(mean)

6.2694987

The actual means are 6.28 and 6.35, not bad at all
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Another way

The smearing solution was developed in the 80s but there are other
approaches

There is a type of models called Generalized Linear Models (GLM)
which encompass our linear regression model, logistics, Poisson and
many more

You choose a “family” and and “link” function. A GLM with family
Normal (sounds kind of funny) or Gaussian and an identity link is the
same as the linear model we have covered this semester

A GLM with a Normal family and a log link is like the log-level model
except that it doesn’t have the retransformation problem

This is so because GLM estimates log(E [x ]) rather than E [log(x)]
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GLM

Convince yourself

glm wage abvavg, family(normal) link(log)

...

Iteration 4: log likelihood = -3726.667

Generalized linear models No. of obs = 1,260

Optimization : ML Residual df = 1,258

Scale parameter = 21.73787

Deviance = 27346.24025 (1/df) Deviance = 21.73787

Pearson = 27346.24025 (1/df) Pearson = 21.73787

Variance function: V(u) = 1 [Gaussian]

Link function : g(u) = ln(u) [Log]

AIC = 5.918519

Log likelihood = -3726.66697 BIC = 18365.55

------------------------------------------------------------------------------

| OIM

wage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | .0106115 .0450922 0.24 0.814 -.0777676 .0989907

_cons | 1.838374 .0250445 73.40 0.000 1.789287 1.88746

------------------------------------------------------------------------------

. di exp(_b[_cons])

6.2863056

. di exp(_b[_cons] + _b[abvavg])

6.3533681

Matches the actual means: 6.28 and 6.35
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Big picture

In many circumstances taking the log of the outcome is necessary to
make the model fit better since it makes the outcome variable more
normally distributed

But you must be careful with the interpretation of parameters since
taking the log induces non-linearity of effects and also changes the
interpretation of the coefficients

A GLM model with log link and Gaussian family provides an
alternative
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Loose ends

What about zeros? The log of zero is undefined

Not uncommon to take log(x + 1) when x = 0; not much is loss

There is a large literature on modeling cost data. Health care cost
data (not all cost data) tend to be skewed, with many zeroes or low
values, and a large tail, which means that SEs of cost models are
likely to be wrong (although not terribly wrong either)

There are some tests to diagnose functional form specifications, like
Ramsey’s regression specification error test (RESET). Super
simple idea: no other retransformation of the Xs should be better

Box-cox transformations (some transformations make parameters
hard to interpret)

You will see them next semester in the context of analyzing cost data
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Transformation to achieve linearity

Your textbook has examples about transformations to achieve linearity

For example, we may want to model exponential growth: y = αX β,
which is not linear on β but can be made linear by taking the log:

log(y) = log(α) + βx , which is the log-level model we have just seen

The last one in the textbook table is y = exp(α+βx)
1+exp(α+βx) . This is the

logit transformation

For all values of α, β, and x the outcome y is restricted to be
between 0 and 1

Useful to model probabilities. Can be made linear:
log( y

1−y ) = α + βx . That’s the log-odds scale
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Transformation to stabilize variance

We have briefly covered heteroskedasticy, when the variance
conditional on explanatory variables is not the same

This is a common violation of the linear model. By stabilize, we mean
making the variance constant conditional on Xs

We have seen this problem in many of the examples we have covered
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Heteroskedastic errors

heteroskedastic errors are fairly common

webuse mksp1, clear

* Plot income and age

scatter income age || lfit income age, color(red) ///

saving(inage.gph, replace) legend(off)

* Get standardize residuals

qui reg income age

predict inres, rstandard

* Plot residuals

scatter inres age, yline(0) saving(inres.gph, replace)

graph combine inage.gph inres.gph, ysize(10) xsize(20)

Note the ysize() and xsize() options
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Heteroskedastic erros

Clearly not that great
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Big picture reminder

When do we need the assumption of equal variance?

We didn’t need it to estimate the parameters of the linear model
(with OLS)

We do need the assumption for statistical inference

One issue with heteroskeasticity erros is that SEs tend to be smaller,
so we think that we have more precision

Some transformations tend to make the assuption of constant
variance (conditional on x) more plausible
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Common transformations

Your textbook has some examples of transformations

It is somewhat outdated and in many cases unnecessary; there are
other options

For example, taking the
√
y of count data may help make the

assumption of constant variance more realistic (assuming that the
data comes from a Poisson distribution)

In Poisson random variable, the mean and the variance are the same

But if we know that, why not use a Poisson model instead? By now,
GLM models are mainstream
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Example

Number of children using income and education as predictors

reg children educ incthou

Source | SS df MS Number of obs = 1,189

-------------+---------------------------------- F(2, 1186) = 21.14

Model | 95.277586 2 47.638793 Prob > F = 0.0000

Residual | 2672.33553 1,186 2.25323401 R-squared = 0.0344

-------------+---------------------------------- Adj R-squared = 0.0328

Total | 2767.61312 1,188 2.32964067 Root MSE = 1.5011

------------------------------------------------------------------------------

children | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ | -.0997509 .0155237 -6.43 0.000 -.130208 -.0692939

incthou | .0014315 .0005881 2.43 0.015 .0002777 .0025853

_cons | 3.020157 .2155896 14.01 0.000 2.597178 3.443137

------------------------------------------------------------------------------

Do we trust p-values if we know that the outcome is Poisson and not
normal?
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Example

Taking the square root

gen sqrtc = sqrt(children)

reg sqrtc educ incthou

Source | SS df MS Number of obs = 1,189

-------------+---------------------------------- F(2, 1186) = 18.95

Model | 20.9654628 2 10.4827314 Prob > F = 0.0000

Residual | 656.024669 1,186 .553140531 R-squared = 0.0310

-------------+---------------------------------- Adj R-squared = 0.0293

Total | 676.990132 1,188 .569857014 Root MSE = .74373

------------------------------------------------------------------------------

sqrtc | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ | -.0453013 .0076915 -5.89 0.000 -.0603918 -.0302109

incthou | .0008992 .0002914 3.09 0.002 .0003276 .0014709

_cons | 1.654554 .1068175 15.49 0.000 1.444982 1.864126

------------------------------------------------------------------------------

Interpretation changes of course. But are the SEs better? Maybe...
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Example

GLM for a Poisson correcting for overdispersion

glm children educ incthou, family(poisson) link(log) scale(x2)

Generalized linear models No. of obs = 1,189

Optimization : ML Residual df = 1,186

Scale parameter = 1

Deviance = 1853.32038 (1/df) Deviance = 1.562665

Pearson = 1586.99291 (1/df) Pearson = 1.338105

Variance function: V(u) = u [Poisson]

Link function : g(u) = ln(u) [Log]

AIC = 3.448657

Log likelihood = -2047.22665 BIC = -6544.589

------------------------------------------------------------------------------

| OIM

children | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ | -.0574921 .0089408 -6.43 0.000 -.0750157 -.0399684

incthou | .0007919 .0003182 2.49 0.013 .0001681 .0014156

_cons | 1.278896 .1203865 10.62 0.000 1.042943 1.514849

------------------------------------------------------------------------------

(Standard errors scaled using square root of Pearson X2-based dispersion.)

The option scale(x2) uses the Pearson’s chi-squared correction for
overdispersion

Note that SEs are closer to the model that does NOT use
√
children
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Example

Parameter interpretation is a bit more complicated as usual with
non-linear models

In Poisson models, taking the exponent of the coefficients makes
them have a relative risk interpretation

As an alternative, we can numerically take the derivative in the
“children” scale rather than the log(children) scale

margins, dydx(educ)

Average marginal effects Number of obs = 1,189

Model VCE : OIM

Expression : Predicted mean children, predict()

dy/dx w.r.t. : educ

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ | -.0969968 .0132187 -7.34 0.000 -.1229049 -.0710886

------------------------------------------------------------------------------

The margins command is worth the price of Stata. We will see more
about the margins command when we cover logistic models
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Some transformations are based on theory

Suppose that you have data on the area and perimeter of old
churches and want to predict the area based on the perimeter

areai = β1 + β0perimeteri + εi

You’ll probably have a pretty good model but the relationship won’t
be linear

Churches are (more or less) squares and the area of a square is s2,
where is s is the length of a side. The perimeter is 4× s, so the
relationship between area and perimeter is non-linear

The fit will be much better if we instead model√
areai = γ0 + γ1perimeteri + εi

This is a favorite stats question. I have seen it with trees (they are
triangles) and circles

Good didactic way of teaching transformations. Sadly, not that great
in the social sciences or HSR
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Summary

Modeling is a key part of analyzing data

We transform variables for presentation, interpretation or to make the
data fit model assumptions

We will deal with violations of some assumptions next week

Then logistic regression and more modeling
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