Week 9: Modeling

Marcelo Coca Perraillon

University of Colorado
Anschutz Medical Campus

Health Services Research Methods I
 HSMP 7607 2019

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.
Updated notes are here: https://clas.ucdenver.edu/marcelo-perraillon/ teaching/health-services-research-methods-i-hsmp-7607

Outline

- A collection of modeling techniques and tricks
- Big picture: We transform variables mostly for two reasons:

1 Making the assumptions of models more plausible (typically involving the outcome variable)
2 Presentation and interpretation (typically involving the explanatory variables)

- The most important part is that you understand that some transformation of variables imply that parameters are interpreted in a different way
- And by now you should recall that if the parameters have a different meaning, so does the the null of the Wald test

Centering

■ We have seen several times that the meaning of the intercept is not that useful

- In the college GPA model:
colgpa $_{i}=\beta_{0}+\beta_{1}$ hsgpa $_{i}+\beta_{2}$ act $_{i}+\epsilon_{i}$
■ The intercept is an extrapolation: average college GPA for those with a high school GPA of zero and ACT score of zero
- We can make the intercept more useful by centering the predictors at some value, usually the average (but it could be any value)
- For example, the average HS GPA is 3.4 and the average ACT score is 24

Centering

- We create two new variables:

```
reg colgpa hsgpa act
```

colgpa \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
hsgpa \|	. 4534559	.0958129	4.73	0.000	.2640047	.6429071
act \|	. 009426	. 0107772	0.87	0.383	-. 0118838	. 0307358
_cons \|	1.286328	. 3408221	3.77	0.000	. 612419	1.960237

* Create new vars
gen hsgpa_c = hsgpa - 3.4
gen act_c $=$ act - 24
- The model becomes:
colgpa $_{i}=\gamma_{0}+\beta_{1}(\text { hsgpa }-3.4)_{i}+\beta_{2}(a c t-24)_{i}+\epsilon_{i}$
- Now γ_{0} has a different meaning: it is the average college GPA for those of average HS GPA and average ACT scores

Centering

- Nothing else has changed in the model colgpa $_{i}=\gamma_{0}+\beta_{1}(\text { hsgpa }-3.4)_{i}+\beta_{2}(\text { act }-24)_{i}+\epsilon_{i}$
■ You can rewrite as
colgpa $_{i}=\left(\gamma_{0}-\beta_{1} 3.4-\beta_{2} 24\right)+\beta_{1}$ hsgpa $_{i}+\beta_{2}$ act $_{i}+\epsilon_{i}$
- In other words, the interpretation of the coefficients (other than intercept) for hsgpa and act is the same

Source I	SS	df	MS	Number of obs$F(2,138)$		$=$	141
						=	14.78
Model \|	3.42365514	2	1.71182757		Prob > F	$=$	0.0000
Residual \|	15.9824443	138	. 115814814	R -squared		$=$	0.1764
					dj R-squared	$=$	0.1645
Total I	19.4060994	140	.138614996	Root MSE		$=$. 34032
colgpa \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con		Interval]
hsgpa_c ।	. 4534559	. 0958129	4.73	0.000	0 . 2640047		. 6429071
act_c \|	. 009426	. 0107772	0.87	0.383	3 -. 0118838		. 0307358
_cons I	3.054302	. 0287056	106.40	0.000	0.997542		3.111062

Centering

- By the way, we also know that 3.05 is the unconditional expectation of colgpa (why?)
- Centering is also helpful presenting interactions of continuous variables:
colgpa $_{i}=\gamma_{0}+\gamma_{1}$ hsgpa_c $+\gamma_{2}$ act_c $_{-}+\gamma_{3}$ hsgpa_c $*$ act_c $+\epsilon_{i}$
■ Remember, with continuous variables, interactions are not so easy to interpret; easier with indicator variables, but that's what centering is doing in a sense
■ Now, for example, γ_{1} is the change in average college GPA for a small change in HS GPA for students with average ACT scores. Similar interpretation for γ_{2}
- Same as $\frac{\partial E[\text { colgpa }]}{\partial h s g p a}=\beta_{1}+\beta_{3}(a c t=24)$ in the uncentered interacted model

Centering

- Note how main effects change and intercept change (but not interaction)

colgpa \|	Coef.	Std. Err	t	$P>\|t\|$	[95\% Con	nterval]
hsgpa_c \|	. 4330686	. 0967374	4.48	0.000	. 241777	. 6243603
act_c \|	. 0103553	. 0107684	0.96	0.338	-. 0109384	. 0316491
c.hsgpa_c\#c.act_c \|	. 0485297	. 0361728	1.34	0.182	-. 0229995	. 1200588
_cons \|	3.039022	. 0308056	98.65	0.000	2.978106	3.099938

* Uncentered
reg colgpa c.hsgpa\#\#c.act

colgpa \|	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{tl}$	[95\% Conf. Interval]	
hsgpa \|	-.731644	.8884938	-0.82	0.412	-2.488579	1.025291
act \|	-.1546457	.122766	-1.26	0.210	-.3974069	.0881156
c.hsgpa\#c.act \|	.0485297	.0361728	1.34	0.182	-.0229995	.1200588
_cons \|	5.278084	2.994696	1.76	0.080	-.6437207	11.19989

```
. di _b[hsgpa] + _b[c.hsgpa#c.act]*24
.43306863
```


Centering

- Not sure why centering is not used more often
- If you have interactions of continuous variables, centering should be your first thought
- Be careful making predictions with a centered model

■ For example, if you want to predict college GPA for those with HS GPA of 3 , you need to plug in -0.4, not 3

- Not a big deal. Make predictions using the uncentered model. Centering is done for presentation and interpretation
- Next semester, when you cover regression discontinuity, you will see that centering is useful because you want to interpret a parameter at one particular point (the cut-off point), so you center at that point

Changing scales

- We can of course change the scale of variables and we should expect that statistical inference will remain the same; parameter interpretation will change
- For example, we saw that age increases income in the GSS dataset:
- realrinc ${ }_{i}=\beta_{0}+\beta_{1}$ age $_{i}+\epsilon$
- We interpret β_{1} as the change in average real income for a one year increase in age
- But that's not the most useful way to measure age. A one year increase is not that meaningful. A ten year increase would be perhaps more useful
- In this simple model, we could just calculate the increase for 10 years. It's $10 * \beta_{1}$; or we could recode age in decades

Rescaling

- Recoding age in decades; nothing other than the coefficient for age changes

```
qui reg realrinc age
est sto m1
gen aged = age/10
qui reg realrinc aged
est sto m2
est table m1 m2, star stats(N r2 ll F)
\begin{tabular}{|c|c|c|}
\hline Variable | & m1 & m2 \\
\hline age | & 454.82891** & \\
\hline aged | & & 4548.2891** \\
\hline _cons | & 12852.508 & 12852.508 \\
\hline N & 1186 & 1186 \\
\hline r2 | & . 00674942 & . 00674942 \\
\hline 11 | & -15009.357 & -15009.357 \\
\hline F I & 8.0456147 & 8.0456145 \\
\hline
\end{tabular}
    legend: * p<0.05; ** p<0.01; *** p<0.001
```


Rescaling

■ What about if the model is number of children on income?

Source I	SS	df	MS	Number of obs	1,189
				$\mathrm{F}(1,1187)$	0.96
Model \|	2.24240941	1	2.24240941	Prob > F	0.3268
Residual \|	2765.37071	1,187	2.32971416	R -squared	0.0008
				Adj R-squared	-0.0000
Total I	2767.61312	1,188	2.32964067	Root MSE	1.5263
children \|	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\| \quad[95 \%$ Conf	Interval]
realrinc \|	$5.71 \mathrm{e}-07$	$5.82 e-07$	0.98	$0.327 \quad-5.71 \mathrm{e}-07$	$1.71 \mathrm{e}-06$
_cons \|	1.668625	. 0481168	34.68	0.0001 .574222	1.763029

- Not a great way of seeing the effect of income on the number of children. The coefficient of realinc is close to zero
- Don't ever do this. It takes less than 10 seconds to recode a variable and you risk making a reviewer angry

Rescaling

■ Better, but still not great. At three decimals, the coefficient is 0.000 ; you could sill make it better by expressing the change by 10 K or 5 K increments (as we did for age)

- Again, this is purely to help with presentation

"Beta" coefficients

- Consider adding education to the model

Source I	SS	df	MS	Number of obs	1,189
				$\mathrm{F}(2,1186)$	21.14
Model \|	95.277586	2	47.638793	Prob > F	0.0000
Residual \|	2672.33553	1,186	2.25323401	R -squared	0.0344
				Adj R-squared	0.0328
Total 1	2767.61312	1,188	2.32964067	Root MSE	1.5011
children \|	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\| \quad[95 \%$ Conf	Interval]
incthou \|	. 0014315	. 0005881	2.43	0.015 .0002777	. 0025853
educ I	-. 0997509	. 0155237	-6.43	$0.000-.130208$	-. 0692939
_cons \|	3.020157	. 2155896	14.01	$0.000 \quad 2.597178$	3.443137

■ We can't compare the magnitude of the coefficients to determine how important they are in explaining the outcome; after all, we just saw that we can change the size of the coefficients by changing the scale

- One trick is to express the coefficients in the same scale

Beta coefficients

- We have seen before that we can standardize a variable by subtracting its mean and dividing by the standard deviation $z_{i}=\frac{x_{i}-\bar{x}}{\sigma}$
- Then z will have a mean of zero and standard deviation of 1
- The idea behind a regression with so-called beta coefficients (yes, not the best name) is to standardize all variables
- The main advantage is that the size of the coefficients tell you how important a variable is in terms of it effect on the outcome because
- Now all of them are measured in the same scale and a small change is a 1 standard deviation. If linear, a 1 standard deviation change

Beta coefficients

- Example: hedonic pricing. What is the effect of pollution on housing prices?
* Get Wooldridge data
bcuse hprice2
reg price nox crime rooms dist stratio

Source	SS	df	MS	Number of obs	=	506
				$\mathrm{F}(5,500)$	=	174.47
Model	$2.7223 \mathrm{e}+10$	5	$5.4445 \mathrm{e}+09$	Prob > F	=	0.0000
Residual	$1.5603 \mathrm{e}+10$	500	31205611.6	R -squared	=	0.6357
				Adj R-squared	=	0.6320
Total	$4.2826 \mathrm{e}+10$	505	84803032	Root MSE	=	5586.

price \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
nox l	-2706.433	354.0869	-7.64	0.000	-3402.114	-2010.751
crime \|	-153.601	32.92883	-4.66	0.000	-218.2969	-88.90504
rooms \|	6735.498	393.6037	17.11	0.000	5962.177	7508.819
dist \|	-1026.806	188.1079	-5.46	0.000	-1396.386	-657.227
stratio \|	-1149.204	127.4287	-9.02	0.000	-1399.566	-898.8422
_cons \|	20871.13	5054.599	4.13	0.000	10940.26	30802

- nox is a measure of nitrogen oxide in the air over each community

Beta coefficients

■ We can standardize variables "by hand" or use the egen command

```
* Hand (i.e. the hand of Stata)
qui sum price
gen zprice = (price - r(mean))/r(sd)
* Easier, use the egen function std() for all variables
foreach var of varlist price nox crime rooms dist stratio {
    egen z'var'=std('var')
}
* Regress
reg zprice znox zcrime zrooms zdist zstratio
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline zprice | & Coef. & Std. Err. & t & \(P>|t|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline znox & -. 340446 & . 0445411 & -7.64 & 0.000 & -. 4279568 & -. 2529352 \\
\hline zcrime | & -. 1432828 & . 0307168 & -4.66 & 0.000 & -. 2036327 & -. 0829328 \\
\hline zrooms | & . 5138878 & . 0300302 & 17.11 & 0.000 & . 454887 & . 5728887 \\
\hline zdist | & -. 2348385 & . 0430217 & -5.46 & 0.000 & -. 3193642 & -. 1503129 \\
\hline zstratio | & -. 2702799 & . 0299698 & -9.02 & 0.000 & -. 3291622 & -. 2113976 \\
\hline _cons | & \(6.61 \mathrm{e}-09\) & . 0269672 & 0.00 & 1.000 & -. 0529829 & . 0529829 \\
\hline
\end{tabular}
```

- Now we can compare the size of the coefficients. And: a one st dv increase in nox decreases price by 0.34 st dvs

Beta coefficients

■ Note that the intercept is zero

- We also standardized price; otherwise changes would be in the price scale
■ Stata has a beta option for regress
reg price nox crime rooms dist stratio, beta

Source \|	SS	df MS		Number of obs	506
				F (5, 500)	174.47
Model \|	$2.7223 \mathrm{e}+10$	5	$5.4445 \mathrm{e}+09$	Prob > F	0.0000
Residual \|	$1.5603 \mathrm{e}+10$	500	31205611.6	6 R -squared	0.6357
				Adj R-squared	0.6320
Total I	$4.2826 \mathrm{e}+10$	505	84803032	2 Root MSE	5586.2
price \|	Coef.	Std. Err.	t	$P>\|t\|$	Beta
nox l	-2706.433	354.0869	-7.64	0.000	-. 340446
crime \|	-153.601	32.92883	-4.66	0.000	-. 1432828
rooms \|	6735.498	393.6037	17.11	0.000	. 5138878
dist \|	-1026.806	188.1079	-5.46	0.000	-. 2348385
stratio \|	-1149.204	127.4287	-9.02	0.000	-. 2702799
_cons \|	20871.13	5054.599	4.13	0.000	

- Replaces Cls for Beta coefficients

Beta coefficients

- Could also leave price in the original scale

```
qui reg price nox crime rooms dist stratio
est sto ori
qui reg zprice znox zcrime zrooms zdist zstratio
est sto m1
qui reg price znox zcrime zrooms zdist zstratio
est sto m2
est table ori m1 m2, stats(N r2)
\begin{tabular}{|c|c|c|c|}
\hline Variable & ori & m1 & m2 \\
\hline nox & -2706.4326 & & \\
\hline crime & -153.60097 & & \\
\hline rooms & 6735.4983 & & \\
\hline dist & -1026.8063 & & \\
\hline stratio & -1149.2038 & & \\
\hline znox & & -. 34044602 & -3135.1184 \\
\hline zcrime & & -. 14328275 & -1319.4702 \\
\hline zrooms & & . 51388784 & 4732.3191 \\
\hline zdist & & -. 23483854 & -2162.5943 \\
\hline zstratio & & -. 27027989 & -2488.9686 \\
\hline _cons & 20871.127 & \(6.608 \mathrm{e}-09\) & 22511.51 \\
\hline N & 506 & 506 & 506 \\
\hline r2 & . 6356658 & . 63566579 & . 63566579 \\
\hline
\end{tabular}
```


Related but a digression

■ Here we standardized so we can compare the contribution of some variables

- But we could standardize any of them so the parameter can be interpreted as change in 1 standard deviation
■ Sometimes the measurement units do not mean much so it's helpful to think about the relevant units
- For example, if a predictor is a depression scale, what does it mean a unit change? Would 10 points be better?

Beta coefficients; back to those children

reg children incthou educ, beta

Source I	SS	df	MS	Number of obs	1,189
				$\mathrm{F}(2,1186)$	21.14
Model ।	95.277586	2	47.638793	3 Prob > F	0.0000
Residual \|	2672.33553	1,186	2.25323401	R -squared	0.0344
				Adj R-squared	0.0328
Total I	2767.61312	1,188	2.32964067	Root MSE	1.5011
children \|	Coef.	Std. Err.	t	$P>\|t\|$	Beta
incthou I	. 0014315	. 0005881	2.43	0.015	. 0713254
educ I	-. 0997509	. 0155237	-6.43	0.000	-. 1882889
_cons I	3.020157	. 2155896	14.01	0.000	

- Education is more important than income but in the original scale $.0997509 / .0014315=69.68$. We know this is meaningless
■ Instead: .1882889/ . $0713254=2.64$
- A linear model is not the best here; the number of children is not normally distributed (Poisson or negative binomial would be better)

Splines

- Linear relationships are easy to estimate and easy to interpret
- Splines are a way to divide relationships that are non-linear into linear pieces connected by "knots"
- They are fairly useful to a) accommodate non-linearities
- And b) great for testing changes in trends; used more commonly in longitudinal data
■ WARNING: The coding of splines can be utterly confusing and there is more than one way of doing it (so careful if you google)

Example

- Example data from Stata on income vs age

```
* Get data
webuse mksp1
* See trend with lowess
lowess income age, gen(linc)
scatter income age || line linc age, color(red) sort
* Estimate separate models for before and after 40
scatter income age || lfit linc age if age <=40 || ///
    lfit linc age if age > 40
```

- What about if we wanted to test that the slope before 40 is the same as the slope after 40 ?
- If we estimated two models (just like in the graph above) we get an estimate of before and after 40, but not a statistical test

Seeing trends

- Note that the two linear pieces are not connected

Splines

■ We will use splines to model two lines joined by a knot at 40 income $=\beta_{0}+\beta_{1}$ age $+\beta_{2}(\text { age }-k)_{+}+\epsilon$

- The $(x)_{+}$is called a truncated line function and is defined as being equal to x if x is positive and zero otherwise. k is the knot. In this example, $k=40$ and $x=$ age -40
■ It's similar to centering but we now make $(\text { age }-k)_{+}=0$ when age ≤ 40
■ Again: $(\text { age }-k)_{+}$will be equal to age (centered) if older than 40 and zero if less than 40
- The only difficult part about splines is to get the coding right, the rest is (relatively) easy

Splines

* Create truncated function
gen aget $=$ age - 40
replace aget $=0$ if age $<=40$
* Estimate model
reg income age aget
predict inchat

Source I	SS	df	MS	Number of obs	100
				$\mathrm{F}(2,97)$	15.69
Model \|	$7.1445 e+09$	2	$3.5722 \mathrm{e}+09$	Prob > F	0.0000
Residual \|	$2.2078 \mathrm{e}+10$	97	227605048	R -squared	0.2445
				Adj R-squared	0.2289
Total I	$2.9222 \mathrm{e}+10$	99	295173333	Root MSE	15087
income \|	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\| \quad[95 \%$ Conf	Interval]
age I	805.6953	210.8633	3.82	$0.000 \quad 387.19$	1224.201
aget \|	-559.8229	340.9786	-1.64	$0.104-1236.571$	116.9253
_cons I	14208.38	6680.308	2.13	$0.036 \quad 949.8135$	27466.94

* Plot
scatter income age || line inchat age, color(red) sort ///
legend(off) saving(spli.gph, replace)
graph export sli.png, replace

Splines

- The two linear pieces are now connected
- Important digression: Is the model right? Probably not. We should compare it to others. We just made it so because we ASSUMED a break at forty

Understanding the model

■ We estimated the model: income $=\beta_{0}+\beta_{1}$ age $+\beta_{2}(\text { age }-40)_{+}$

- If age ≤ 40 the model is A): income $=\beta_{0}+\beta_{1}$ age
- If age >40 the model is: income $=\beta_{0}+\beta_{1}$ age $+\beta_{2}($ age -40$)$
- Same as centering, so if age >40 the model is B): income $=\left(\beta_{0}-\beta_{2} * 40\right)+\left(\beta_{1}+\beta_{2}\right)$ age
- Compare A) and B). When are they going to be the same?
- If $\beta_{2}=0$, then the slope before and after is the same
- Note that β_{2} is the incremental change in slope

■ The trick of using the truncated function is that it allowed us the possibility of a different slope after 40

Testing if slope is the same before and after 40

- From the comparison of A) and B) it's clear that if we test the null $H_{0}: \beta_{2}=0$ we are testing whether the slopes are the same before and after 40
- If we reject the null, then there is a change, which can be positive or negative
- From the output above, we do not reject the null: $p=0.104$ so there is not enough evidence to suggest that there is a change in slope after 40
■ See Stata's mkspline command for more ways of using splines;
- You can make cubic splines, assuming two or more non-linear lines with a knot

Paper example

From: Incidence and Mortality of Hip Fractures in the United States
JAMA. 2009;302(14):1573-1579. doi: 10.1001/jama. 2009.1462

Figure Legend:
Data are based on a 20\% sample of Medicare claims: error bars indicate 95% confidence intervals. $\mathrm{P}<.001$ for a change in trend it 1995. Regions of y-axes that are in blue indicate incidence rate of 0 to 500 per 100000 population.

■ Sample sizes were huge so not a lot of need of a test but...

- Very useful and flexible to test changes in trends, including a before and after policy change (with the caveat that the causal inference could be complicated)

Suggestions

- 1) Always verify that you coded splines correctly. Plot predicted values (this is generic example. Always plot predicted values to verify you code things correctly)
- 2) Write down the model for before and after the knot (remember the truncated function changes at the knot)
- 3) You can of course combine splines with interactions (homework)

Summary

- We will see more modeling issues next class
- This is important and the key is to understand the meaning of the parameters
- Once you get the meaning, hypothesis testing and modeling is easier
- More next class...

