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Outline

A collection of modeling techniques and tricks

Big picture: We transform variables mostly for two reasons:

1 Making the assumptions of models more plausible (typically involving
the outcome variable)

2 Presentation and interpretation (typically involving the explanatory
variables)

The most important part is that you understand that some
transformation of variables imply that parameters are interpreted in a
different way

And by now you should recall that if the parameters have a
different meaning, so does the the null of the Wald test
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Centering

We have seen several times that the meaning of the intercept is not
that useful

In the college GPA model:

colgpai = β0 + β1hsgpai + β2acti + εi

The intercept is an extrapolation: average college GPA for those
with a high school GPA of zero and ACT score of zero

We can make the intercept more useful by centering the predictors
at some value, usually the average (but it could be any value)

For example, the average HS GPA is 3.4 and the average ACT score
is 24
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Centering

We create two new variables:

reg colgpa hsgpa act

...

-----------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4534559 .0958129 4.73 0.000 .2640047 .6429071

act | .009426 .0107772 0.87 0.383 -.0118838 .0307358

_cons | 1.286328 .3408221 3.77 0.000 .612419 1.960237

------------------------------------------------------------------------------

* Create new vars

gen hsgpa_c = hsgpa - 3.4

gen act_c = act - 24

The model becomes:

colgpai = γ0 + β1(hsgpa− 3.4)i + β2(act − 24)i + εi

Now γ0 has a different meaning: it is the average college GPA for
those of average HS GPA and average ACT scores
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Centering

Nothing else has changed in the model
colgpai = γ0 + β1(hsgpa− 3.4)i + β2(act − 24)i + εi

You can rewrite as
colgpai = (γ0 − β13.4 − β224) + β1hsgpai + β2acti + εi

In other words, the interpretation of the coefficients (other than
intercept) for hsgpa and act is the same

reg colgpa hsgpa_c act_c

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(2, 138) = 14.78

Model | 3.42365514 2 1.71182757 Prob > F = 0.0000

Residual | 15.9824443 138 .115814814 R-squared = 0.1764

-------------+---------------------------------- Adj R-squared = 0.1645

Total | 19.4060994 140 .138614996 Root MSE = .34032

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa_c | .4534559 .0958129 4.73 0.000 .2640047 .6429071

act_c | .009426 .0107772 0.87 0.383 -.0118838 .0307358

_cons | 3.054302 .0287056 106.40 0.000 2.997542 3.111062

------------------------------------------------------------------------------
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Centering

By the way, we also know that 3.05 is the unconditional
expectation of colgpa (why?)

Centering is also helpful presenting interactions of continuous
variables:

colgpai = γ0 + γ1hsgpa c + γ2act c + γ3hsgpa c ∗ act c + εi

Remember, with continuous variables, interactions are not so easy to
interpret; easier with indicator variables, but that’s what centering is
doing in a sense

Now, for example, γ1 is the change in average college GPA for a small
change in HS GPA for students with average ACT scores. Similar
interpretation for γ2

Same as ∂E [colgpa]
∂hsgpa = β1 + β3(act = 24) in the uncentered interacted

model
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Centering
Note how main effects change and intercept change (but not
interaction)

* Centered

reg colgpa c.hsgpa_c##c.act_c

-----------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

------------------+----------------------------------------------------------------

hsgpa_c | .4330686 .0967374 4.48 0.000 .241777 .6243603

act_c | .0103553 .0107684 0.96 0.338 -.0109384 .0316491

|

c.hsgpa_c#c.act_c | .0485297 .0361728 1.34 0.182 -.0229995 .1200588

|

_cons | 3.039022 .0308056 98.65 0.000 2.978106 3.099938

-----------------------------------------------------------------------------------

* Uncentered

reg colgpa c.hsgpa##c.act

-------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

--------------+----------------------------------------------------------------

hsgpa | -.731644 .8884938 -0.82 0.412 -2.488579 1.025291

act | -.1546457 .122766 -1.26 0.210 -.3974069 .0881156

|

c.hsgpa#c.act | .0485297 .0361728 1.34 0.182 -.0229995 .1200588

|

_cons | 5.278084 2.994696 1.76 0.080 -.6437207 11.19989

-------------------------------------------------------------------------------

. di _b[hsgpa] + _b[c.hsgpa#c.act]*24

.43306863
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Centering

Not sure why centering is not used more often

If you have interactions of continuous variables, centering should
be your first thought

Be careful making predictions with a centered model

For example, if you want to predict college GPA for those with HS
GPA of 3, you need to plug in -0.4, not 3

Not a big deal. Make predictions using the uncentered model.
Centering is done for presentation and interpretation

Next semester, when you cover regression discontinuity, you will see
that centering is useful because you want to interpret a parameter at
one particular point (the cut-off point), so you center at that point
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Changing scales

We can of course change the scale of variables and we should expect
that statistical inference will remain the same; parameter
interpretation will change

For example, we saw that age increases income in the GSS dataset:

realrinci = β0 + β1agei + ε

We interpret β1 as the change in average real income for a one year
increase in age

But that’s not the most useful way to measure age. A one year
increase is not that meaningful. A ten year increase would be perhaps
more useful

In this simple model, we could just calculate the increase for 10 years.
It’s 10 ∗ β1; or we could recode age in decades

9



Rescaling

Recoding age in decades; nothing other than the coefficient for age
changes

qui reg realrinc age

est sto m1

gen aged = age/10

qui reg realrinc aged

est sto m2

est table m1 m2, star stats(N r2 ll F)

----------------------------------------------

Variable | m1 m2

-------------+--------------------------------

age | 454.82891**

aged | 4548.2891**

_cons | 12852.508 12852.508

-------------+--------------------------------

N | 1186 1186

r2 | .00674942 .00674942

ll | -15009.357 -15009.357

F | 8.0456147 8.0456145

----------------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001
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Rescaling

What about if the model is number of children on income?

reg children realrinc

Source | SS df MS Number of obs = 1,189

-------------+---------------------------------- F(1, 1187) = 0.96

Model | 2.24240941 1 2.24240941 Prob > F = 0.3268

Residual | 2765.37071 1,187 2.32971416 R-squared = 0.0008

-------------+---------------------------------- Adj R-squared = -0.0000

Total | 2767.61312 1,188 2.32964067 Root MSE = 1.5263

------------------------------------------------------------------------------

children | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

realrinc | 5.71e-07 5.82e-07 0.98 0.327 -5.71e-07 1.71e-06

_cons | 1.668625 .0481168 34.68 0.000 1.574222 1.763029

------------------------------------------------------------------------------

Not a great way of seeing the effect of income on the number of
children. The coefficient of realinc is close to zero

Don’t ever do this. It takes less than 10 seconds to recode a
variable and you risk making a reviewer angry
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Rescaling

Better, but still not great. At three decimals, the coefficient is 0.000;
you could sill make it better by expressing the change by 10K or 5K
increments (as we did for age)

Again, this is purely to help with presentation

gen incthou = realrinc/1000

reg children incthou

Source | SS df MS Number of obs = 1,189

-------------+---------------------------------- F(1, 1187) = 0.96

Model | 2.24240939 1 2.24240939 Prob > F = 0.3268

Residual | 2765.37071 1,187 2.32971416 R-squared = 0.0008

-------------+---------------------------------- Adj R-squared = -0.0000

Total | 2767.61312 1,188 2.32964067 Root MSE = 1.5263

------------------------------------------------------------------------------

children | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

incthou | .0005713 .0005823 0.98 0.327 -.0005712 .0017137

_cons | 1.668625 .0481168 34.68 0.000 1.574222 1.763029

------------------------------------------------------------------------------
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“Beta” coefficients

Consider adding education to the model

. reg children incthou educ

Source | SS df MS Number of obs = 1,189

-------------+---------------------------------- F(2, 1186) = 21.14

Model | 95.277586 2 47.638793 Prob > F = 0.0000

Residual | 2672.33553 1,186 2.25323401 R-squared = 0.0344

-------------+---------------------------------- Adj R-squared = 0.0328

Total | 2767.61312 1,188 2.32964067 Root MSE = 1.5011

------------------------------------------------------------------------------

children | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

incthou | .0014315 .0005881 2.43 0.015 .0002777 .0025853

educ | -.0997509 .0155237 -6.43 0.000 -.130208 -.0692939

_cons | 3.020157 .2155896 14.01 0.000 2.597178 3.443137

------------------------------------------------------------------------------

We can’t compare the magnitude of the coefficients to determine
how important they are in explaining the outcome; after all, we just
saw that we can change the size of the coefficients by changing the
scale

One trick is to express the coefficients in the same scale
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Beta coefficients

We have seen before that we can standardize a variable by
subtracting its mean and dividing by the standard deviation

zi = xi−x̄
σ

Then z will have a mean of zero and standard deviation of 1

The idea behind a regression with so-called beta coefficients (yes,
not the best name) is to standardize all variables

The main advantage is that the size of the coefficients tell you how
important a variable is in terms of it effect on the outcome because

Now all of them are measured in the same scale and a small change
is a 1 standard deviation. If linear, a 1 standard deviation change
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Beta coefficients

Example: hedonic pricing. What is the effect of pollution on housing
prices?

* Get Wooldridge data

bcuse hprice2

reg price nox crime rooms dist stratio

Source | SS df MS Number of obs = 506

-------------+---------------------------------- F(5, 500) = 174.47

Model | 2.7223e+10 5 5.4445e+09 Prob > F = 0.0000

Residual | 1.5603e+10 500 31205611.6 R-squared = 0.6357

-------------+---------------------------------- Adj R-squared = 0.6320

Total | 4.2826e+10 505 84803032 Root MSE = 5586.2

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nox | -2706.433 354.0869 -7.64 0.000 -3402.114 -2010.751

crime | -153.601 32.92883 -4.66 0.000 -218.2969 -88.90504

rooms | 6735.498 393.6037 17.11 0.000 5962.177 7508.819

dist | -1026.806 188.1079 -5.46 0.000 -1396.386 -657.227

stratio | -1149.204 127.4287 -9.02 0.000 -1399.566 -898.8422

_cons | 20871.13 5054.599 4.13 0.000 10940.26 30802

------------------------------------------------------------------------------

nox is a measure of nitrogen oxide in the air over each community
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Beta coefficients

We can standardize variables “by hand” or use the egen command

* Hand (i.e. the hand of Stata)

qui sum price

gen zprice = (price - r(mean))/r(sd)

* Easier, use the egen function std() for all variables

foreach var of varlist price nox crime rooms dist stratio {

egen z‘var’=std(‘var’)

}

* Regress

reg zprice znox zcrime zrooms zdist zstratio

...

------------------------------------------------------------------------------

zprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

znox | -.340446 .0445411 -7.64 0.000 -.4279568 -.2529352

zcrime | -.1432828 .0307168 -4.66 0.000 -.2036327 -.0829328

zrooms | .5138878 .0300302 17.11 0.000 .454887 .5728887

zdist | -.2348385 .0430217 -5.46 0.000 -.3193642 -.1503129

zstratio | -.2702799 .0299698 -9.02 0.000 -.3291622 -.2113976

_cons | 6.61e-09 .0269672 0.00 1.000 -.0529829 .0529829

------------------------------------------------------------------------------

Now we can compare the size of the coefficients. And: a one st dv
increase in nox decreases price by 0.34 st dvs
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Beta coefficients
Note that the intercept is zero

We also standardized price; otherwise changes would be in the
price scale

Stata has a beta option for regress

reg price nox crime rooms dist stratio, beta

Source | SS df MS Number of obs = 506

-------------+---------------------------------- F(5, 500) = 174.47

Model | 2.7223e+10 5 5.4445e+09 Prob > F = 0.0000

Residual | 1.5603e+10 500 31205611.6 R-squared = 0.6357

-------------+---------------------------------- Adj R-squared = 0.6320

Total | 4.2826e+10 505 84803032 Root MSE = 5586.2

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| Beta

-------------+----------------------------------------------------------------

nox | -2706.433 354.0869 -7.64 0.000 -.340446

crime | -153.601 32.92883 -4.66 0.000 -.1432828

rooms | 6735.498 393.6037 17.11 0.000 .5138878

dist | -1026.806 188.1079 -5.46 0.000 -.2348385

stratio | -1149.204 127.4287 -9.02 0.000 -.2702799

_cons | 20871.13 5054.599 4.13 0.000 .

------------------------------------------------------------------------------

Replaces CIs for Beta coefficients
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Beta coefficients

Could also leave price in the original scale

qui reg price nox crime rooms dist stratio

est sto ori

qui reg zprice znox zcrime zrooms zdist zstratio

est sto m1

qui reg price znox zcrime zrooms zdist zstratio

est sto m2

est table ori m1 m2, stats(N r2)

-----------------------------------------------------

Variable | ori m1 m2

-------------+---------------------------------------

nox | -2706.4326

crime | -153.60097

rooms | 6735.4983

dist | -1026.8063

stratio | -1149.2038

znox | -.34044602 -3135.1184

zcrime | -.14328275 -1319.4702

zrooms | .51388784 4732.3191

zdist | -.23483854 -2162.5943

zstratio | -.27027989 -2488.9686

_cons | 20871.127 6.608e-09 22511.51

-------------+---------------------------------------

N | 506 506 506

r2 | .6356658 .63566579 .63566579

-----------------------------------------------------
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Related but a digression

Here we standardized so we can compare the contribution of some
variables

But we could standardize any of them so the parameter can be
interpreted as change in 1 standard deviation

Sometimes the measurement units do not mean much so it’s helpful
to think about the relevant units

For example, if a predictor is a depression scale, what does it mean a
unit change? Would 10 points be better?
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Beta coefficients; back to those children

reg children incthou educ, beta

Source | SS df MS Number of obs = 1,189

-------------+---------------------------------- F(2, 1186) = 21.14

Model | 95.277586 2 47.638793 Prob > F = 0.0000

Residual | 2672.33553 1,186 2.25323401 R-squared = 0.0344

-------------+---------------------------------- Adj R-squared = 0.0328

Total | 2767.61312 1,188 2.32964067 Root MSE = 1.5011

------------------------------------------------------------------------------

children | Coef. Std. Err. t P>|t| Beta

-------------+----------------------------------------------------------------

incthou | .0014315 .0005881 2.43 0.015 .0713254

educ | -.0997509 .0155237 -6.43 0.000 -.1882889

_cons | 3.020157 .2155896 14.01 0.000 .

------------------------------------------------------------------------------

Education is more important than income but in the original scale
.0997509/.0014315 = 69.68. We know this is meaningless

Instead: .1882889/ .0713254 = 2.64

A linear model is not the best here; the number of children is not
normally distributed (Poisson or negative binomial would be better)
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Splines

Linear relationships are easy to estimate and easy to interpret

Splines are a way to divide relationships that are non-linear into
linear pieces connected by “knots”

They are fairly useful to a) accommodate non-linearities

And b) great for testing changes in trends; used more commonly in
longitudinal data

WARNING: The coding of splines can be utterly confusing and
there is more than one way of doing it (so careful if you google)
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Example

Example data from Stata on income vs age

* Get data

webuse mksp1

* See trend with lowess

lowess income age, gen(linc)

scatter income age || line linc age, color(red) sort

* Estimate separate models for before and after 40

scatter income age || lfit linc age if age <=40 || ///

lfit linc age if age > 40

What about if we wanted to test that the slope before 40 is the same
as the slope after 40?

If we estimated two models (just like in the graph above) we get an
estimate of before and after 40, but not a statistical test
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Seeing trends

Note that the two linear pieces are not connected
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Splines

We will use splines to model two lines joined by a knot at 40

income = β0 + β1age + β2(age − k)+ + ε

The (x)+ is called a truncated line function and is defined as being
equal to x if x is positive and zero otherwise. k is the knot. In this
example, k = 40 and x = age − 40

It’s similar to centering but we now make (age − k)+ = 0 when age
≤ 40

Again: (age − k)+ will be equal to age (centered) if older than 40
and zero if less than 40

The only difficult part about splines is to get the coding right, the
rest is (relatively) easy
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Splines

* Create truncated function

gen aget = age - 40

replace aget = 0 if age <= 40

* Estimate model

reg income age aget

predict inchat

Source | SS df MS Number of obs = 100

-------------+---------------------------------- F(2, 97) = 15.69

Model | 7.1445e+09 2 3.5722e+09 Prob > F = 0.0000

Residual | 2.2078e+10 97 227605048 R-squared = 0.2445

-------------+---------------------------------- Adj R-squared = 0.2289

Total | 2.9222e+10 99 295173333 Root MSE = 15087

------------------------------------------------------------------------------

income | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | 805.6953 210.8633 3.82 0.000 387.19 1224.201

aget | -559.8229 340.9786 -1.64 0.104 -1236.571 116.9253

_cons | 14208.38 6680.308 2.13 0.036 949.8135 27466.94

------------------------------------------------------------------------------

* Plot

scatter income age || line inchat age, color(red) sort ///

legend(off) saving(spli.gph, replace)

graph export sli.png, replace
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Splines

The two linear pieces are now connected

Important digression: Is the model right? Probably not. We should
compare it to others. We just made it so because we ASSUMED
a break at forty
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Understanding the model

We estimated the model: income = β0 + β1age + β2(age − 40)+

If age ≤ 40 the model is A) : income = β0 + β1age

If age > 40 the model is: income = β0 + β1age + β2(age − 40)

Same as centering, so if age > 40 the model is B):
income = (β0 − β2 ∗ 40) + (β1 + β2)age

Compare A) and B). When are they going to be the same?

If β2 = 0, then the slope before and after is the same

Note that β2 is the incremental change in slope

The trick of using the truncated function is that it allowed us the
possibility of a different slope after 40
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Testing if slope is the same before and after 40

From the comparison of A) and B) it’s clear that if we test the null
H0 : β2 = 0 we are testing whether the slopes are the same before
and after 40

If we reject the null, then there is a change, which can be positive or
negative

From the output above, we do not reject the null: p = 0.104 so there
is not enough evidence to suggest that there is a change in slope after
40

See Stata’s mkspline command for more ways of using splines;

You can make cubic splines, assuming two or more non-linear lines
with a knot
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Paper example

Sample sizes were huge so not a lot of need of a test but...

Very useful and flexible to test changes in trends, including a before
and after policy change (with the caveat that the causal inference
could be complicated)
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Suggestions

1) Always verify that you coded splines correctly. Plot predicted
values (this is generic example. Always plot predicted values to verify
you code things correctly)

2) Write down the model for before and after the knot (remember the
truncated function changes at the knot)

3) You can of course combine splines with interactions (homework)
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Summary

We will see more modeling issues next class

This is important and the key is to understand the meaning of the
parameters

Once you get the meaning, hypothesis testing and modeling is easier

More next class...
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