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Review of assumptions

Gauss-Markov theorem

The linear model is BLUE

Using residuals to diagnose non-normality and non-linearity
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Big picture

We have made several assumptions when estimating the linear model
using OLS and MLE

Today, we will cover more formally some assumptions to show that
(paraphrasing) the linear model is the bomb

(If you are into skiing and white hair is not yet a concern: the linear
model is rad, epic; insert many !!!!!!)

Note that I’m saying that linear regression is the bomb, not OLS (we
saw that MLE is pretty much the same)

Once we understand the role of each of the assumptions, we can start
talking about diagnosing violations; what is usually called regression
diagnostics

We are also going to cover ways of “fixing” some problems
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Assumptions 1 to 4

1) Linear in parameters: The parameters of the population model are
linear with respect to the outcome. So we can write the model as
Y = β0 + β1X1 + · · ·+ βpXp + ε

2) Random sampling: We assume that there was random sampling
and we obtained data for Y and X1 to Xp (note: not saying that it
came from a randomized experiment)

3) No perfect collinearity: In the sample and population, none of the
covariates is constant and there are no exact linear relationships
among the independent variables (Chapter 9)

4) Zero conditional mean: The error has an expected value of zero
given any values of the independent variables: E [ε|x1, ..., xp] = 0;
alternatively, no confounders were left behind (in the error, that is)
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Number 4, again

Assumption number 4, zero conditional mean, is about the
population, not the model in the sample

We saw from the first order conditions that the residuals always add
up to zero and that the covariance, and thus correlation, between the
residuals and the explanatory variables is zero

The distinction between sample and population is key for
understanding causal inference the economist way. Without the zero
conditional mean, we can’t say that our model estimated using a
sample represents a conditional expectation

We saw that the “modern” way of understanding causal inference
separates the design of the study and the particular way of estimating
a relationship
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Big picture

Remember that we covered some basic properties of estimators

The first one is that E [β̂] = β, that is, unbiasness

The second one was efficiency. Among estimators, we want the one
that has smaller standard error; or the one that is more precise

The last property is asymptotic: the larger the sample size the closer,
in probability, our estimator should get to the true but unknown
population parameter (consistency)

With the four assumptions of the previous slide, we can show that the
parameters estimated from OLS (or MLE) are unbiased. So:
E [β̂j ] = βj (note that the zero conditional mean is the key one)
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Assumption 5

5) Homoskedasticity: The error ε has the same variance given any
value of the explanatory variable. That is, var(ε|x1, ..., xp) = 0

We have seen this one before but we didn’t pay much attention to it

For OLS, we made no assumptions about the variance. We did need
that assumption to figure out the distribution of β̂j

We said that ε ∼ N(0, σ2). Note that it is σ2 and not σ2
i . We are

saying that observations are idd

When we covered MLE, we assumed that the data came from a
normal distribution whose mean was explained by covariates but we
said that the observations had a normal distribution with σ2 (again,
not σ2

i )

Also, we didn’t make σ2 a function of covariates (we could, it’s
actually not that hard to estimate using MLE)
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Graphically

From Wooldridge:
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Heteroskedasticity is often a concern in applied analysis

It’s often the case that the variance increases with the values of a
covariate, if only because samples sizes are smaller

Think about income (Y) and education (X) for example. At the high
end of education, those with PhDs or MDs or MDs and PhDs tend to
have higher incomes (surgeon?) or relatively low incomes (teacher?)

For those that have fewer years of education, income is more
homogeneous. Also, only 2% of the population has a PhD or another
advanced degree

We will see ways to deal with heteroskedasticity (Chapter 7)

But remember: even with heteroskedasticity, we still have unbiased
estimators; in the linear model, heteroskedasticy is a problem for
inference because the standard errors are going to be wrong

How wrong? It depends, but it’s not hard to solve this problem (with
larger samples)
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Gauss-Markov theorem

Under assumptions 1-5, the Gauss-Markov theorem says that the
estimates from the linear model (obtained via OLS or MLE) are BLUE

BLUE: Best Linear Unbiased Estimator

The unbiased part is easy; the “best” here means that the parameters
β̂j have the smallest variances among the class of all linear unbiased
estimators

In other words; With OLS, we get unbiasness, efficiency, and
consistency
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The linear model is BLUE

This is purely for didactic purposes so you remember

Most Valentine’s days some economist friend has to post a variation
of the following:

Roses are red; OLS is BLUE; I’ll run regressions anytime with you

Roses are red; OLS is BLUE; I’m 95% confident that I really love you!

Please don’t do it; but you get the fascination with BLUE

Also, don’t make the same mistake economists tend to make all the
time: it’s not OLS, it’s the linear model; OLS is just a method of
estimation (to be fair, MLE has the wrong variance but it’s easy to
fix)

It’s the model Yi = β0 + β1X1i + ...+ βpXpi + εi , where εi are iid and
εi ∼ N(0, σ2) . This is equivalent as saying that
Y ∼ N(β0 + β1X1i + ...+ βpXpi , σ

2)
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Simulating a normal model

You can easily simulate a linear model. Don’t underestimate
simulations. They help you understand the abstract concepts

(Btw, this is the simulation I should have done when covering MLE
adding a covariate to model the mean as a function of one covariate
X)

set obs 1000

* I just need an X, doesn’t need to be random

gen x = runiform()*10

gen y = 20 + 2*x + rnormal(0,5)

* Note the 5 there, that’s the standard deviation of y, so variance is 5^2

sum y x

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

y | 1,000 30.06353 7.923546 6.852018 51.87202

x | 1,000 4.891377 2.938474 .0002378 9.997806
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y ∼ N(β̂0 + β̂1x , σ
2)

So Y also distributes normal, with conditional variance of 52
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We can estimate our simulated model

We should recover the parameters using the reg command

reg y x

Source | SS df MS Number of obs = 1,000

-------------+---------------------------------- F(1, 998) = 1519.18

Model | 37852.9849 1 37852.9849 Prob > F = 0.0000

Residual | 24866.8191 998 24.9166524 R-squared = 0.6035

-------------+---------------------------------- Adj R-squared = 0.6031

Total | 62719.8041 999 62.7825866 Root MSE = 4.9917

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x | 2.094814 .0537453 38.98 0.000 1.989347 2.20028

_cons | 19.81701 .3066381 64.63 0.000 19.21528 20.41874

------------------------------------------------------------------------------

Note the difference between Root MSE and standard deviation of Y
from summarize command (observed vs unexplained by model)
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Back to diagnostics

We seldom can be certain that we can satisfy all five assumptions but
some are more trivial than other [e.g. 1) and 2)]

The zero conditional mean cannot be verified with data; you
need knowledge about the subject and how the data was collected
(experimental? Observational?). For causality, we need to understand
the assignment mechanism

We can check some of the other assumption and make corrections if
necessary

Besides causal inference (zero conditional mean), the most common
to be concerned about are heteroskedasticity and collinearity (not
perfect collinearity, though, that one is easy – you won’t get estimates
or you will get a warning from Stata)

What other assumptions did we make or did NOT make?

15



Other assumptions or lack thereof

We made no assumptions about the distribution of the explanatory
variables X

However, an implicit assumption is that the variables X were
measured without error

There are models that are used when some explanatory variables are
measured with error (for example, random coefficient models)

The main consequence of measurement error is that it makes the
estimates less precise (higher standard errors) and the Wald tests are
“biased towards the null” (when the null is H0 = βj = 0)

Remember, less precise estimates mean larger standard errors and
thus larger confidence intervals, so we will tend to not reject the null

There are several types of measurement error (systematic, random,
classical, etc)
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Regression diagnostics

We will use regression diagnostics to check for violations of some
assumptions or other important problems

In particular:

1 Deviations from the normality assumption
2 Observations that have leverage, influence, or are outliers
3 Multicollinearity
4 Heteroskedasticity

For now, 1) and 2)
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Using the residuals

We will use the residuals to check some assumptions

Remember, we define the residuals as ε̂i = yi − ŷi for the n
observations i = 1, ..., n

We calculate residuals by predicting y and subtracting from the
observed y : (yi − ŷi ) = yi − (β̂0 + β̂1x1 + · · ·+ β̂pxp)

There is another way to think about predicted values. We could write
them as a function of observed values:

ŷi = pi1y1 + pi2y2 + · · ·+ pinyn, for i = 1, 2, ..., n

More compact: ŷi =
∑n

j=1 pijyj

In other words, for each observation i , the predicted outcome ŷ can
be written as the weighted sum of all observed values, weighted by pij

Intuitively, pij has to depend on the value of the predictor variables
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Leverage

Look at the formula again: ŷi = pi1y1 + pi2y2 + · · ·+ pinyn, for
i = 1, 2, ..., n

We are saying that each predicted value for each observation can be
written as a weighted sum of all the other outcomes values y in
the dataset

Think about regression towards the mean and how the prediction for
one observation depends on the value of all other observations

So each observation has it’s own weight. In the simple case of one
predictor:

pii = 1
n + (xi−x̄)2∑

(xi−x̄)2

We call pii the leverage value of observation i

Note that observations with a value xi that is far away from the
average x̄ will have more leverage

You will be happy to know that pii are the diagonal elements of your
beloved projection matrix P
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Leverage example

Simulate a regression model with one predictor

The post-estimation command predict has an option “leverage” to
calculate the leverage for each observation

set obs 100

gen x = runiform()*10

gen y = 20 + 2*x + rnormal(0,5)

sum x

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

x | 100 5.150371 2.77518 .2311043 9.997318

* Calculate leverage

predict ylev, leverage

* Sort in descending order (so highest leverage on top)

gsort -ylev

We can display the top 15 observations in terms of leverage
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Graphing leverage

Remember that the special variable “ n” indexes observations (so
n == 1 is the first observation; n == 100 the last in this example

because there are 100 observations)

scatter y x if _n > 20, xline(5) || lfit y x, color(blue) legend(off) || ///

scatter y x if _n <= 20, color(red) title("Red: top 20 in leverage") ///

saving(leverage.gph, replace)

graph export leverage.png, replace

I’m mixing three graphs. The xline(5) draws a vertical line at the
mean of x, which is around 5
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Graphing leverage

As we just saw, observations with values away from the mean of X
will have more leverage
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What to do with leverage?

By themselves, the leverage values are not that informative; it makes
sense that observations that are away from the central value will
influence predictions

We go over leverage points because we would like to study the
residuals, but the variance of the residuals are a function of leverage
points: var(ε̂) = σ2(1− pii )

So we can standardize the residuals: ri = ε̂i
σ̂
√

1−pii
,

where σ̂ =
√

SSE
(n−p−1)

This are called the studentized residuals or standardized residuals,
which have a mean of zero and a standard deviation of 1

Now we have comparable residuals (same variance)
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Stata

The option rstandard of the predict command calculates the
standardized residuals

predict res_std, rstandard

sum res_std

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

res_std | 100 -.0005914 1.003669 -2.81966 2.493449

Now, checks
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Check linearity and normality

The standardized residuals should have a normal distribution

hist res_std, kdensity saving(rno.gph, replace)

qnorm res_std, saving(qno.gph, replace)

graph combine rno.gph qno.gph, row(1)

graph export nor.png, replace

qnorm compares the variable with a normal distribution (Q-Q plot)

qnorm compares quantiles of the observed variable to a theoretical
normal with mean and standard deviation like those of the observed
variable
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Normality

We simulated the data following a normal so no surprise that the
residuals follow a normal distribution
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What about violations?

Let’s simulate two situations. 1) Non-mormal errors and 2)
mispecification of model

* True model has Chi-square errors

gen y2 = 20 + 2*x + (rnormal(0,5))^2

* We estimate a model that assumes normal errors

reg y2 x

* Calculate standardized residuals

predict y2res, rstandard

* Plot

qnorm y2res, saving(qny2.gph, replace)

graph export qny2.png, replace

We should expect the residuals not to be normally distributed
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Non-normal errors

One problem with this method of detection is that the violation could
be about using the wrong model (mispecification), not only, or
because, the error was not normal
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Model mispecification

What if we estimate the wrong model?

* The true model has normal errors (and normal outcome y) but it is quadratic on x

gen x2 = x^2

gen y3 = 20 + 2*x + 5*x2 + rnormal(0,5)

* We estimate a model that assumes a linear relationship between x an y

reg y3 x

Source | SS df MS Number of obs = 100

-------------+---------------------------------- F(1, 98) = 1522.19

Model | 2358966.01 1 2358966.01 Prob > F = 0.0000

Residual | 151872.536 98 1549.71976 R-squared = 0.9395

-------------+---------------------------------- Adj R-squared = 0.9389

Total | 2510838.54 99 25362.0055 Root MSE = 39.366

------------------------------------------------------------------------------

y3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x | 54.43913 1.39533 39.02 0.000 51.67014 57.20811

_cons | -77.35757 8.62617 -8.97 0.000 -94.47592 -60.23921

------------------------------------------------------------------------------

predict y3res, rstandard

qnorm y3res, saving(qny3.gph, replace)

graph export qny3.png, replace

Note the fit is good (R2, nothing seems off with the model)
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Model mispecification

Not normal again...
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Plot residuals against x values

Plotting the residuals against each of the covariates is helpful to
detect non-linearity (mis-specification)

scatter y2res x, yline(0) title("Model with non-normal errors but correct functional form") ///

saving(y2r.gph, replace)

scatter y3res x, yline(0) title("Normal errors but mispecified") ///

saving(y3r.gph, replace)

graph combine y2r.gph y3r.gph, col(1)

graph export resplots.png, replace

Remember, the cor(residual, x) is zero but remember, too, that
the correlation is about a linear relationship
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Plot residuals against x values

Top one is ok, the bottom one shows that we didn’t take into account
a non-linear relationship between x and y (What’s the correlation
coefficient in the second one? Zero, of course)
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Summary

We can use the (standardized) residuals to diagnose some departures
from assumptions

We CANNOT use residuals for the zero conditional mean assumption
or, equivalent, the ignorable treatment assignment assumption

One key is to understand what assumptions 1 to 5 imply (say, what is
the problem with heteroskedasticity?)

Recall that some properties of linear regression are algebraic and will
always be true in the sample; some assumptions we only needed for
inference

Next class, more diagnostics. Next week, finally dummy variables
(yay!!)
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