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Outline

An alternative way of estimating parameters: Maximum likelihood
estimation (MLE)

Simple examples: Bernoulli and Normal with no covariates

Adding explanatory variables

Variance estimation

Why MLE is so important?

Likelihood ratio tests
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Bernoulli example

Suppose that we know that the following ten numbers were simulated
using a Bernoulli distribution: 0 0 0 1 1 1 0 1 1 1

We can denote them by y1, y2, ..., y10. So y1 = 0 and y10 = 1

Recall that the pdf of a Bernoulli random variable is
f (y ; p) = py (1− p)1−y , where y ∈ {0, 1}
The probability of 1 is p while the probability of 0 is (1− p)

We want to figure out what is the p that was used to simulate the
ten numbers

All we know is that 1) they come from a Bernoulli distribution and 2)
they are independent from each other
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Bernoulli example

Since we know the pdf that generated the numbers is Bernoulli, we
know that the probability of the first number is py1(1− p)1−y1

The probability of the second is py2(1− p)1−y2 and so on...

We could replace the yi with the actual numbers. For example, the
first one is y1 = 0 so the probability is just (1− p). I’ll keep the
symbols because we are going to make the problem more general

What we do not know is the value of the parameter p

Since we know that they are independent we could also write down
the probability of observing all 10 numbers. That is, their joint
probability

Since they are independent their joint distribution is the multiplication
of the 10 pdfs. Recall: p(A ∩ B) = P(A)P(B) if A and B are
independent
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Bernoulli example

We use the product symbol
∏

to simplify the notation. For example,∏2
i=1 xi = x1 ∗ x2

So we can write the joint probability or the likelihood (L) of seeing
those 10 numbers as:

L(p) =
∏10

i=1 p
yi (1− p)1−yi
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Bernoulli example

Remember that we are trying to find the p that was used to generate
the 10 numbers. That’s our unknown

In other words, we want to find the p that maximizes the likelihood
function L(p). Once we find it, we could it write as our estimated
parameter as p̂

Yet another way: we want to find the p̂ that makes the joint
likelihood of seeing those numbers as high as possible

Sounds like a calculus problem... We can take the derivative of L(p)
with respect to p and set it to zero to find the optimal p̂

Of course, the second step is to verify that it’s a maximum and not a
minimum (take second derivative) and also verify that is unique, etc.
We will skip those steps
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Bernoulli example

Taking that derivative is complicated because we would need to use
the chain rule several times. A lot easier to make it a sum so we take
the log; the log function is a monotonic transformation, it won’t
change the optimal p̂ value

We will use several properties of the log, in particular:
log(xayb) = log(xa) + log(yb) = a ∗ log(x) + b ∗ log(y)

So now we have (for n numbers rather than 10):

lnL(p) =
∑n

i=1 yi ln(p) +
∑n

i=1(1− yi )ln(1− p)

Which simplifies to: lnL(p) = nȳ ln(p) + (n − nȳ)ln(1− p)

This looks a lot easier; all we have to do is take dln(p)
dp , set it to zero,

and solve for p
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Bernoulli example

dln(p)
dp = nȳ

p −
(n−nȳ)
(1−p) = 0

After solving, we’ll find that p̂(yi ) = ȳ =
∑n

i=1
yi
n

So that’s the MLE estimator of p. This is saying more or less the
obvious: our best guess for the p that generated the data is the
proportion of 1s, in this case p = 0.6

We would need to verify that our estimator satisfies the three basic
properties of an estimator: bias, efficiency, and consistency (this will
be in your exam)

Note that we can plug in the optimal p̂ back into the ln likelihood
function:

lnL(p̂) = nȳ ln(p̂) + (n − nȳ)ln(1− p̂) = a, where a will be a number
that represents the highest likelihood we can achieve (we chose p̂)
that way
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Example

Simulated 100 Bernoulli rvs with p = 0.4

set obs 100

gen bernie = uniform()<0.4

sum bernie

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

bernie | 100 .46 .5009083 0 1

* We just showed that p hat is 0.46

* Let’s get the highest value of the ln likelihood

* Plug in p hat and the other values

di 100*0.46*ln(0.46) + (100-100*0.46)*ln(1-0.46)

-68.994376

And we just did logistic regression “by hand.” A logistic model with
only a constant (no covariates), also known as the null model
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Example

We will use the logit command to model indicator variables, like
whether a person died

logit bernie

Iteration 0: log likelihood = -68.994376

Iteration 1: log likelihood = -68.994376

Logistic regression Number of obs = 100

LR chi2(0) = -0.00

Prob > chi2 = .

Log likelihood = -68.994376 Pseudo R2 = -0.0000

------------------------------------------------------------------------------

bernie | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | -.1603427 .2006431 -0.80 0.424 -.5535959 .2329106

------------------------------------------------------------------------------

di 1/(1+exp( .1603427 ))

.45999999

Note that Log likelihood = -68.994376 matches what we found “by
hand;” the coefficient is in the log-odds scale

This is a model with no explanatory variables. We can easily make
the parameter p be a linear function of predictors
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Some things to note

Statistical software maximizes the log likelihood numerically (also the
log likelihood because of numerical precision)

The algorithm is given a starting value for some parameters (often
using using the null model)

Each iteration “improves” the maximization

The second derivatives are also computed (we will see why in a sec)

In many cases, we need to be mindful of the difference between the
scale of estimation and the scale of interest

Logit models report coefficients in the log-odds scale

Not the only way of deriving logit models. You could also assume a
Binomial pdf. The Bernoulli is a special case of the Binomial when
the number of trials is 1
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Let’s plot the - ln(L) function with respect to p
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What about the precision (standard error) of the estimate?

There is some intuition in the plot above. The precision of the
estimate p̂ can be measured by the curvature of the lnL(θ) function
around its peak

A flatter curve has more uncertainty

The Fisher information function, I (θ) formalizes that intuition:

I (θ) = −E [∂
2lnL(θ)
∂2θ

]

It turns out that we can calculate var(θ) using the inverse of I (θ)

For the Bernoulli, I (p̂) = n
[p̂(1−p̂)] (evaluated at p̂)

The variance is 1/I (p̂) = p̂(1−p̂)
n

Note something. Once we know p̂ we also know its variance. The
Normal distribution is unique in that the variance is not a function of
the mean
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What about covariates?

In most applications we want to estimate the effect of covariates on
the probability p

So we could just make p a function of covariates: p = f (x1, x2, ..., xp)

We can’t just make it a linear function like
p = β0 + β1x1 + · · ·+ βpxp. Why?

But we can use a function that guarantees that p will be bounded
between 0 and 1

Enters the logistic or logit function: 1
1+e−(β0+β1x1+···+βpxp)

Now we don’t want to estimate p. The unknows are the parameters βj

Hence the logit or logistic model name. See, piece of cake. Careful
with Chatterjee’s textbook...
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Normal example

What about if we do the same but now we have numbers like

90.46561

105.1319

117.5445

102.7179

102.7788

107.6234

94.87266

95.48918

75.63886

87.40594

I tell you that they were simulated from a normal distribution with
parameters µ and σ2. The numbers are independent. Your job is to
come up with the best guess for the two parameters

Same problem as with the Bernoulli example. We can solve it in
exactly the same way
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Normal example

As before, we know the pdf of a Normal random variable and because
the observations are independent we can multiply the densities:

L(µ, σ2) =
∏n

i=1
1√

2πσ2
exp (−(yi−µ)2

2σ2 )

Remember the rules of exponents, in particular eaeb = ea+b. We can
write the likelihood as:

L(µ, σ2) = ( 1√
2πσ2

)nexp(− 1
2σ2

∑n
i=1(yi − µ)2)
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Normal example

As before, we can simplify the problem by taking the log to help us
take the derivatives. But before:

Alert: Perhaps you are wondering, why are we using the pdf of the
normal if we know that the probability of one number is zero?
Because we can think of the pdf as giving us the probability of yi + d
when d → 0

We need computers with lots of floating number ability. MLE was
invented in the 50s/60s. Super difficult to implement. In the 80s, we
had Commodore 64s
https://en.wikipedia.org/wiki/Commodore_64

Researchers could use mainframe computers with punch cards. Your
iPhone is faster than mainframes that used fit in a building...
https://en.wikipedia.org/wiki/Mainframe_computer

Maybe you were not wondering that but I was at some point. I
wonder a lot in general. And daydream on a minute by minute basis...
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Normal example

After taking the ln, we have:

lnL(µ, σ2) = −n
2 ln(2πσ2)− 1

2σ2

∑n
i=1(yi − µ)2

All we have left is to take the derivative with respect to our two
unknowns, µ and σ2 and set them to zero. Let’s start with µ:
∂ln(L(µ,σ2))

∂µ = 2 1
2σ2

∑n
i=1(yi − µ) = 0

The above expression reduces to (I added theˆto emphasize that’s
the optimal):∑n

i=1(yi − µ̂) = 0

Does it look familiar? Replace µ̂ with ŷi . That’s exactly the same as
the first order condition we saw when minimizing the sum of squares

Solving, we find that µ̂ =
∑n

i=1 yi
n = ȳ . In other words, our best guess

is just the mean of the numbers
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Normal example

We can also figure out the variance by taking the derivative with
respect to σ2

We will find that σ̂2 =
∑n

i=1(yi−µ̂)
n

If you remember the review lecture on probability and statistics, we
know that this formula is biased. We need to divide by (n− 1) instead

(What is the definition of bias?)

This happens often in MLE. The MLE estimate of the variance is
often biased but it is easy to correct for it
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Normal example Stata

We just figured out that the best guess is to calculate the sample
mean and sample variance

We can easily verify in Stata

clear

set seed 1234567

set obs 100

gen ynorm = rnormal(100, 10)

sum ynorm

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

ynorm | 100 98.52294 10.03931 74.16368 123.5079

The sum commands divides the sample variance by (n-1)
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Linear regression: adding covariates

What about if I told you that the number I generated is a linear
function of one variable, say, x1? In other words, I’m saying that the
mean of the normal distribution is µ = β0 + β1x1

Now we want to find the parameters β0, β1, σ
2 that maximize the

likelihood function. Once we know the optimal β̂0, β̂1 we find the
optimal µ̂

The likelihood function is now:

L(β0, β1, σ
2) = 1√

2πσ2
exp(− 1

2σ2

∑n
i=1(yi − β0 − β1x1i )

2)

The ln likelihood is:

lnL(µ, σ2) = −n
2 ln(2πσ2)− 1

2σ2

∑n
i=1(yi − β0 − β1x1i )

2
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Linear regression

If we take the derivatives with respect to β0 and β1 we will find
exactly the same first order conditions as we did with OLS. For
example, with respect to β1:∑n

i=1 x1(yi − β0 − β1x1) = 0

All the algebraic properties of OLS still hold true here

The MLE estimate of σ2 will be biased but we divide by (n-p-1)
instead as we saw before

So what do we gain with MLE?

We do gain a lot in the understanding of linear regression
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The regression command again

The regression command does not use MLE but it does give you the
log likelihood

use auto

qui reg price weight mpg

ereturn list

scalars:

e(N) = 74

e(df_m) = 2

e(df_r) = 71

e(F) = 14.7398153853841

e(r2) = .2933891231947529

e(rmse) = 2514.028573297152

e(mss) = 186321279.739451

e(rss) = 448744116.3821706

e(r2_a) = .27348459145376

e(ll) = -682.8636883111164

e(ll_0) = -695.7128688987767

e(rank) = 3

The log likelihood of the estimated model is stored in e(ll). The log
likelihood of the null model (with no covariates) is stored in e(ll0).

From the numbers above e(ll) > e(ll0)
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The regression command again

Stata uses a formula to go from SSE to log likelihood. Remember,
SSE is Stata is stored in the scalar r(rss)

sysuse auto, clear

qui reg price weight mpg

* Save sample size and SSE

local N = e(N)

local rss = e(rss)

* Use formula

local ll = -0.5*‘N’*(ln(2*_pi)+ln(‘rss’/‘N’)+1)

display %20.6f ‘ll’

-682.863688

display %20.6f e(ll)

-682.863688

The formula is −0.5N(ln(2π) + ln(SSEN ) + 1)

24



Easy MLE in Stata

To estimate in MLE using Stata you need to write a program but
Stata now makes it a lot easier (for teaching purposes) with the
mlexp command

mlexp (ln(normalden(price, {xb: weight mpg _cons}, {sigma})))

initial: log likelihood = -<inf> (could not be evaluated)

feasible: log likelihood = -803.76324

rescale: log likelihood = -729.85758

rescale eq: log likelihood = -697.2346

Iteration 0: log likelihood = -697.2346

Iteration 1: log likelihood = -687.4506

Iteration 2: log likelihood = -682.92425

Iteration 3: log likelihood = -682.86401

Iteration 4: log likelihood = -682.86369

Iteration 5: log likelihood = -682.86369

Maximum likelihood estimation

Log likelihood = -682.86369 Number of obs = 74

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

xb |

weight | 1.746559 .6282189 2.78 0.005 .5152727 2.977846

mpg | -49.51222 84.39157 -0.59 0.557 -214.9167 115.8922

_cons | 1946.069 3523.382 0.55 0.581 -4959.634 8851.771

-------------+----------------------------------------------------------------

/sigma | 2462.542 202.4197 12.17 0.000 2065.806 2859.277

------------------------------------------------------------------------------
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Almost same

The SEs are slightly different and so is Root MSE. Stata is using the
second derivatives to calculate SEs using MLE

. reg price weight mpg

Source | SS df MS Number of obs = 74

-------------+---------------------------------- F(2, 71) = 14.74

Model | 186321280 2 93160639.9 Prob > F = 0.0000

Residual | 448744116 71 6320339.67 R-squared = 0.2934

-------------+---------------------------------- Adj R-squared = 0.2735

Total | 635065396 73 8699525.97 Root MSE = 2514

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

weight | 1.746559 .6413538 2.72 0.008 .467736 3.025382

mpg | -49.51222 86.15604 -0.57 0.567 -221.3025 122.278

_cons | 1946.069 3597.05 0.54 0.590 -5226.245 9118.382

------------------------------------------------------------------------------
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Asymptotic properties are so important in stats

The auto dataset has only 74 obs. What about we use the MEPS
that has about 15000? (That’s really an overkill but just to make the
point)

mlexp (ln(normalden(lexp, {xb: age _cons}, {sigma})))

initial: log likelihood = -<inf> (could not be evaluated)

could not find feasible values

* I tried giving it starting values but didn’t work. Easier to do it the old fashioned way

* Create program defining model and likelihood function

capture program drop lfols

program lfols

args lnf xb lnsigma

local y "$ML_y1"

quietly replace ‘lnf’ = ln(normalden(‘y’, ‘xb’,exp(‘lnsigma’)))

end

*Estimate model

ml model lf lfols (xb: lexp = age female) (lnsigma:)

ml maximize

* Sigma estimated in the log scale so it’s positive

display exp([lnsigma]_cons)

reg lexp age female
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Asymptotic properties are so important in stats

ml maximize

initial: log likelihood = -453412.9

alternative: log likelihood = -163550.49

.

Iteration 5: log likelihood = -29153.79

Number of obs = 15,946

Wald chi2(2) = 2981.22

Log likelihood = -29153.79 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

lexp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

xb |

age | .0358123 .0006779 52.82 0.000 .0344836 .0371411

female | .3511679 .024252 14.48 0.000 .303635 .3987009

_cons | 5.329011 .0373155 142.81 0.000 5.255874 5.402148

-------------+----------------------------------------------------------------

lnsigma |

_cons | .4093438 .0055996 73.10 0.000 .3983687 .4203189

------------------------------------------------------------------------------

display exp([lnsigma]_cons)

1.5058293
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Asymptotic properties are SO IMPORTANT in stats

reg lexp age female

Source | SS df MS Number of obs = 15,946

-------------+---------------------------------- F(2, 15943) = 1490.33

Model | 6759.97668 2 3379.98834 Prob > F = 0.0000

Residual | 36157.9049 15,943 2.26794862 R-squared = 0.1575

-------------+---------------------------------- Adj R-squared = 0.1574

Total | 42917.8816 15,945 2.69162004 Root MSE = 1.506

------------------------------------------------------------------------------

lexp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0358123 .000678 52.82 0.000 .0344834 .0371413

female | .3511679 .0242542 14.48 0.000 .3036269 .398709

_cons | 5.329011 .037319 142.80 0.000 5.255861 5.40216

------------------------------------------------------------------------------

One should be tolerant of small decimal differences. Which brings me
back to why is everybody (including medical journals) so obsessed
with p = 0.05 being the sacred line? What’s the difference between
p = 0.05 and p = 0.06 or p = 0.04? Makes little sense
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So is Stata taking derivatives and finding formulas? Nope

Stata uses numerical methods to maximize the likelihood. There are
many and some work better than others in some situations. Type
“help mle” for the gory details

A classic one is the Newton-Raphson algorithm

The idea requires Taylor expansions (a way to approximate nonlinear
functions using linear functions)

The steps are:

1 Make a guess about the parameters, say just one parameter θ0

2 Approximate the log likelihood function using Taylor series at θ0 and
set it equal to zero (easier to solve because it’s a linear function)

3 Find the new θ, say, θ1. Check if the log likelihood has improved
4 Repeat until the -2 log likelihood changes by only a small amount, say

0.02

The idea of using -2 log likelihood < 0.02 is that that amount would
not change statistical inference since -2 log likelihood is in the
Chi-square scale (more on this in a sec)
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Why is the log likelihood function negative?
The likelihood function L(p) is a small number since it’s the joint
likelihood of observing the outcome values
Different type of MLE methods

twoway function y =log(x), range(-2 2) xline(0 1) yline(0) ///

color(red) title("y = log(x)")

graph export logy.png, replace
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What we get from MLE

1) It is clear that we are modeling a conditional expectation
function: E [Y |X ]

Perhaps this got lost but it’s worth repeating. We started with the
normal density:

f (y ;µ, σ) = 1√
2πσ2

exp (−(yi−µ)2

2σ2 )

We then said that the mean µ is a function of one or more
covariates x and we made no assumptions about the distribution of
x :

f (y ;µ, σ) = 1√
2πσ2

exp (−(yi−(β0+β1xi ))2

2σ2 )

That’s why I said many times that the assumption ε ∼ N(0, σ2) is the
same as saying that the assumption is y ∼ N(β0 + β1x , σ

2), since
µ = β0 + β1x

Note that with MLE we did not assume anything about the errors.
In fact, the errors are not even in the equations
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What we get from MLE

2) It is clear from the start of setting up the problem that we are
assuming that Y distributes normal conditional on the values of X .
Remember the example of heights for men and women. In some
cases, perfectly valid to use a linear model even if the distribution
of Y does not look like a normal. See http://tiny.cc/1r26qy

3) It is clear that we assume that the observations are independent;
otherwise, we cannot multiply the densities

4) The value of the optimal log likelihood function gives us a measure
of the goodness of fit, much like SSR (i.e. the explained part) did. By
comparing the log likelihood of alternative models, we will test if the
reduced model is adequate like we did with the F test

5) The curvature of the log likelihood function provides information
about the precision of the estimates (i.e. standard errors)
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What we get from MLE

6) MLE is much more general than OLS. You will use MLE for logit,
Probit, Poisson, mixture models, survival models. Pretty much all the
standard models an applied researcher needs

7) Learning to model using likelihood ratio tests is more useful for
more type of models than using the SSE for nested models

8) AIC and BIC to compare non-nested models are based on the log
likelihood function

Here is a more detailed proof of MLE for the normal:
https://www.statlect.com/fundamentals-of-statistics/

normal-distribution-maximum-likelihood
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Likelihood ratio test (LRT)

The null H0 is that the restricted (constrained) model is adequate

The alternative H1 is that the full (unconstrained) model is adequate

The likelihood ratio test compares the log-likelihoods of both models
and can be written as:

LR = −2[L(RM)− L(FM)], where L(RM) is the log-likelihood of the
restricted model and L(FM) that of the full model

Under the null that the restricted model is adequate, the test
statistics LR distributes χ2 with degrees of freedom given by
df = dffull − dfrestricted ; that is, the difference in degrees of freedom
between the restricted and full models
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Likelihood ratio test: sketch of theory

The theory of LRTs is a bit dense but the intuition is not that
difficult to understand

We could re-write as LR = −2L(RMFM ) since log( a
b ) = log(a)− log(b)

So we are comparing the likelihood of the reduced model to the full
model and wondering if the reduced model alone is just fine. Sounds
familiar? Not that different from the F test comparing SSEs of nested
models

Keep in mind that the estimated model parameters are those that
maximized the value of the likelihood

The more theoretical part is to figure out how the LRT distributes
and under which conditions the LRT is valid (models must be nested)
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Recall the F test

We have LR = −2L(RMFM )

The F test was F = [SSE(RM)−SSE(FM)]/(p+1−k)
SSE(FM)/(n−p−1)

Both are using a measure of fit to compare models

With MLE, we want to know if reaching a higher likelihood is due to
chance under the null

With the F test, we want to know if the additional reduction in the
residual variance is due to chance under the null

The requirement is that models must be nested
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Example

Compare the likelihood and other criteria

qui reg colgpa

est sto m1

...

est table m1 m2 m3, star stat(r2 r2_a ll bic aic) b(%7.3f)

-----------------------------------------------------

Variable | m1 m2 m3

-------------+---------------------------------------

hsgpa | 0.482*** 0.459***

skipped | -0.077**

_cons | 3.057*** 1.415*** 1.579***

-------------+---------------------------------------

r2 | 0.000 0.172 0.223

r2_a | 0.000 0.166 0.211

ll | -60.257 -46.963 -42.493

bic | 125.462 103.823 99.832

aic | 122.513 97.925 90.985

-----------------------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001

Note that the log likelihood (ll) gets larger for better fitting models;
we will cover AIC and BIC later
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Example

LR tests

lrtest m3 m2

Likelihood-ratio test LR chi2(1) = 8.94

(Assumption: m2 nested in m3) Prob > chi2 = 0.0028

. lrtest m3 m1

Likelihood-ratio test LR chi2(2) = 35.53

(Assumption: m1 nested in m3) Prob > chi2 = 0.0000

It seems logical that LRT and F-test comparing nested models should
be equivalent (asymptotically)
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LRT and F-tests

Compare tests

qui reg colgpa

est sto m0

scalar ll0 = e(ll)

reg colgpa male campus

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(2, 138) = 0.62

Model | .171856209 2 .085928105 Prob > F = 0.5413

Residual | 19.2342432 138 .139378574 R-squared = 0.0089

-------------+---------------------------------- Adj R-squared = -0.0055

Total | 19.4060994 140 .138614996 Root MSE = .37333

...

est sto m1

scalar ll1 = e(ll)

lrtest m0 m1

Likelihood-ratio test LR chi2(2) = 1.25

(Assumption: m0 nested in m1) Prob > chi2 = 0.5341

* By hand

di -2*[ll0 - ll1]

1.2542272

p-value of both 0.5341 (I chose bad predictors so p-values would be
high)
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Summary

MLE is not more difficult than OLS

The advantage of learning MLE is that it is by far the most general
estimation method

Learning the concept of log-likelihood and LRT will help us when
modeling linear models, logistics, Probit, Poisson and many more

AIC and BIC use the log-likelihood

We are using the log-likelihood in a similar way we used SSR,
although we did the F-test in terms of SSE but we know that SST =
SSE + SSR

Never forget the main lesson of MLE with a normal: We are
modeling the mean as a function of variables

See more examples under Code on my website:
http://tinyurl.com/mcperraillon
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