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Outline

Adjusted R2

More on testing hypotheses in linear models
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R2 versus R2
a (adjusted)

We saw before that the goodness of fit of a linear regression can be
measured by R2 = SSR

SST = 1 − SSE
SST

This is equivalent to [cor(ŷ , y)]2

We can still use this measure but when we compare models that
have different number of predictors it is better to to take into
account the number of predictors

In the linear model, R2 will always increase (or not decrease) when we
add more parameters, regardless of whether they are relevant or not

The “adjusted” (for the number of parameters) model is

R2
a = 1 −

SSE
(n−p−1)

SST
(n−1)

Note that the more parameters we estimate the larger is p and the
more SSE is penalized
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Example

Stata shows these quantities in the ANOVA table

. reg colgpa hsgpa male skipped

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(3, 137) = 13.30

Model | 4.37665441 3 1.4588848 Prob > F = 0.0000

Residual | 15.029445 137 .109703978 R-squared = 0.2255

-------------+---------------------------------- Adj R-squared = 0.2086

Total | 19.4060994 140 .138614996 Root MSE = .33122

. di 1-.109703978/.138614996

.20857064

But why an extra parameter reduces SSE? This is because
SST = SSR + SSE , so SSE = SST − SSR. SST is not going to
change (it’s the unexplained, observed variance) but the more
variables we add to the model the more we can ”explain” with the
regression, so SSR will tend to go down

As usual, remember the context: we are talking about the vanilla
linear model. This is not true in non-linear models like logit or
probit. Adding more variables could make the model worse
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Example
Add (literally) random noise to the regression

gen noise = uniform()

qui reg colgpa hsgpa male skipped

est sto m1

reg colgpa hsgpa male skipped noise

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4710294 .0898855 5.24 0.000 .2932754 .6487834

male | .0409904 .0584738 0.70 0.484 -.0746451 .1566259

skipped | -.080972 .0265302 -3.05 0.003 -.1334371 -.0285069

noise | -.0026149 .0984739 -0.03 0.979 -.197353 .1921232

_cons | 1.521224 .3209863 4.74 0.000 .8864544 2.155994

------------------------------------------------------------------------------

est sto m2

est table m1 m2, star stats(N r2 r2_a) b(%7.3f)

----------------------------------------

Variable | m1 m2

-------------+--------------------------

hsgpa | 0.471*** 0.471***

male | 0.041 0.041

skipped | -0.081** -0.081**

noise | -0.003

_cons | 1.520*** 1.521***

-------------+--------------------------

N | 141 141

r2 | 0.226 0.226

r2_a | 0.209 0.203

----------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001
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A couple of things to notice

The parameter for noise is not significant, which makes sense

None of the other coefficients were affected at all because noise is not
correlated to any of them (verify)

The R2
a went down, which is somewhat reassuring

R2 did not change at 3 decimals (actual numbers are 0.225530 vs
0.225534)

One more time: Remember the context. This is true in linear
models. In other models adding irrelevant variables may make the fit
of the model worse
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Small digression
What if we add random noise that is correlated to one of the
covariates?

gen noise2 = skipped*noise + rnormal(0,5)

| noise2 skipped colgpa hsgpa male

-------------+---------------------------------------------

noise2 | 1.0000

skipped | 0.2573 1.0000

colgpa | -0.1022 -0.2618 1.0000

hsgpa | -0.0357 -0.0897 0.4146 1.0000

male | 0.0422 0.2010 -0.0765 -0.2075 1.0000

qui reg colgpa hsgpa male skipped

est sto m1

qui reg colgpa hsgpa male skipped noise2

est sto m2

est table m1 m2, star stats(N r2 r2_a) b(%7.6f)

------------------------------------------

Variable | m1 m2

-------------+----------------------------

hsgpa | 0.471037*** 0.470484***

male | 0.040885 0.040586

skipped | -0.080895** -0.078127**

noise2 | -0.002154

_cons | 1.519816*** 1.521428***

-------------+----------------------------

N | 141 141

r2 | 0.225530 0.226446

r2_a | 0.208571 0.203694

------------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hypotheses testing

Nothing much has changed respect to Wald tests but now the degrees
of freedom for the t-student are different

For confidence intervals

β̂j ± t(n−p−1,α/2)se(β̂j)

We need to take into account that we are now estimating p+1
parameters. t(n−p−1,α/2) is still close to 2 and with large samples
closer to 1.96 (as the z from the standard normal)

We could do the same simulations we did before because we know
that β̂j distributes normal

If we wanted to do simulations to do tests or probabilities about two
or more parameters at the same time, we need to consider their
covariance
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Simulating from multivariate normals

It used to be a bit of a hassle to do this simulation but Stata now has
a command to do it

qui reg colgpa hsgpa skipped

* Save coefficients and variance-covariance matrix

matrix M = e(b)

matrix V = e(V)

clear

* won’t delete matrices

matrix list M

matrix list V

* Simulate 10,000 draws from multivariate normal with mean M and var-covar V

drawnorm b_hsgpa b_skip b_cons, n(10000) cov(V) means(M)

sum

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

b_hsgpa | 10,000 .4604699 .088031 .1144291 .807568

b_skip | 10,000 -.0771271 .0258411 -.1671696 .017728

b_cons | 10,000 1.573506 .3040728 .3955161 2.747055

. corr

| b_hsgpa b_skip b_cons

-------------+---------------------------

b_hsgpa | 1.0000

b_skip | 0.0837 1.0000

b_cons | -0.9918 -0.1727 1.0000
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Simulating from multivariate normals

Each β has a marginal normal too

10



Simulating from multivariate normals

What is the probability that b hsgpa > 0.4 and b skipped < −0.05?

count if b_hsgpa > 0.4 & b_skip < -0.05

6,410

di 6410/10000

0.641

Fairly likely

Remember, we need to take into account their joint probability
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Comparing nested models

Models are said to be nested if one can be obtained as a special case
of the other

a) y = β0 + β1x1 + β2x2 is nested within b)
y = β0 + β1x1 + β2x2 + β3x3

If β3 = 0, the we can obtain a) from b)

Two non-nested models:

a) y = β0 + β1x1 + β2y is NOT nested within b)
y = β0 + β1x1 + β2x2 + β3x3

We often call the smaller model the reduced or restricted model
and the larger model the full model

Lot’s of theory behind the above statements; it’s a paradigm for doing
statistical tests. We will learn about this after we learn Maximum
Likelihood Estimation (MLE)
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Comparing nested models

The intuition for comparing nested models is fairly simple: we will
compare their SSEs

Recall that SSE is the sum of squares of the residuals, which gives a
measure of the variance not explained by our model

Comparing SSE is similar to comparing R2
a . We are essentially trying

to figure out what improvement in R2
a is good enough (is the

improvement due to chance?)

Define SSE(RM) as the sum of square of the residuals of the reduced
model and SSE(FM) as the sum of square of the residuals of the full
model

We will use the ratio F = [SSE(RM)−SSE(FM)]/(p+1−k)
SSE(FM)/(n−p−1)
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Comparing nested models

F = [SSE(RM)−SSE(FM)]/(p+1−k)
SSE(FM)/(n−p−1)

The above expression is just the proportion of unexplained variance
between the reduced and full model relative to the full model

We just divided by the degrees of freedom to take into account the
parameters estimated. The parameters in the full model are p + 1
while the parameters of the reduced model are denoted by k

What is the sign of [SSE (RM) − SSE (FM)]?

The smaller F the more convinced we should be that the full model is
not that great. We are estimating more parameters but not reducing
the unexplained variation
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Null hypotheses

When comparing models, our null hypothesis is that the reduced
model is adequate

The alternative is that the full model is adequate

By now you should remember that the ratio of SSEs distributes F
with some degrees of freedom

We reject the null if F ≥ F (p + 1 − k , n − p − 1;α)

F (p + 1 − k , n − p − 1;α) is the critical value

Note that p+1-k is just the number of additional parameters in the
full model
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Digression about χ2 and F distributions

set obs 10000

gen ychin = rchi2(2)

gen ychid = rchi2(139)

gen f = ychin/ychid

See a pattern here? Chi-square (χ2) with df 139 converges to normal

Why is χ2 positive? Rejection for F is the tail on right, so large values
of F will be likely to be rejected; also, F = (t − student)2
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Test all parameters are equal to zero

Reduced model: colgpa = β0

Full model: colgpa = γ0 + γ1hsgpa + γ2skipped

Recall that the null is that the reduced model is adequate

Since the reduced model is just the mean of colgpa, then SSE = SST

This test is essentially testing γ1 = γ2 = 0

In words, all parameters p are simultaneously equal to zero
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F test “by hand”

Stata stores SSE in a temporary variable called e(rss)

qui reg colgpa

* ereturn list

scalar sse_r = e(rss)

qui reg colgpa hsgpa skipped

scalar sse_f = e(rss)

di ((sse_r - sse_f)/2)/(sse_f/(141-3))

19.77258

di invFtail(2,138,0.05)

3.0617157

reg colgpa hsgpa skipped

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(2, 138) = 19.77

Model | 4.32237812 2 2.16118906 Prob > F = 0.0000

Residual | 15.0837213 138 .109302328 R-squared = 0.2227

-------------+---------------------------------- Adj R-squared = 0.2115

Total | 19.4060994 140 .138614996 Root MSE = .33061

It matches the regression output: 19.77

Note that the critical value is usually around 3, larger for smaller
samples (see Stata code for this class)
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Digression: Be curious

How is the rejection region affected by sample size in an F-test?

forvalues i = 10(10)300 {

di ‘i’ " " invFtail(2,‘i’,0.05)

}

10 4.102821

20 3.4928285

30 3.3158295

40 3.231727

50 3.1826099

60 3.1504113

70 3.1276756

80 3.1107662

90 3.097698

100 3.0872959

110 3.0788195

120 3.0717794

130 3.0658391

140 3.0607595

150 3.0563663

160 3.0525291

170 3.0491486

...

Why? Remember what happened to the t-student critical value when
the sample size increases
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But we can also use the test command

The test command is quite flexible

qui reg colgpa hsgpa skipped

test hsgpa skipped

( 1) hsgpa = 0

( 2) skipped = 0

F( 2, 138) = 19.77

Prob > F = 0.0000

* Remember this: shortcut for

test _b[hsgpa] = _b[skipped] = 0

( 1) hsgpa - skipped = 0

( 2) hsgpa = 0

F( 2, 138) = 19.77

Prob > F = 0.0000

You can do much more with test but don’t forget the logic of the test

Terminology and software can be confusing; the above F-test is a
Wald test
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More

Your textbook has more examples that you can easily do with the test
command

They are extensions of the idea of comparing reduced and full models

Remember too that the theory about the Wald test is not for testing
one parameter but rather a linear combination of parameters. Some
examples:

test hsgpa = skipped

( 1) hsgpa - skipped = 0

F( 1, 138) = 36.18

Prob > F = 0.0000

test hsgpa + skipped =1

( 1) hsgpa + skipped = 1

F( 1, 138) = 43.69

Prob > F = 0.0000
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Summary

The idea of partitioning the variance and using SSE =
∑

(yi − ŷi )
2 as

a measure of the variation in y not explained by the model leads to a
general method for comparing models

The models must be nested

We want our models to be parsimonious (“unwilling to spend money
or use resources; stingy or frugal; sparing, restrained”)

We haven’t covered the inferential theory but it all starts with the
assumption of normally distributed iid error terms

Next, we will cover maximun likelihood estimation and will show
that we can use the likelihood function in a similar way we used SSE
or SSR

For the Nth time: the advantage of focusing on MLE is that the
method applies to many other models, not just linear regression
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