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Partitioning variance

Recall from last class that we saw that the sum of the residual is zero,
which implies that the predicted ¯̂y is the same as the observed ȳ , so
always ¯̂y = ȳ

Also, for each observation i in our dataset the following is always true
by definition of the residual:

yi = ŷi + ε̂i , which is equivalent to

yi = ŷi + (yi − ŷi )

In words, an observed outcome value yi is equal to its predicted value
plus the residual

We can do a little bit of algebra to go from this equality to something
more interesting about the way we can interpret linear regression
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Partitioning variance

Subtract ȳ from both sides of the equation and group terms:

(yi − ȳ) = (ŷi − ȳ) + (yi − ŷi )

Since ȳ = ¯̂y :

(yi − ȳ) = (ŷi − ¯̂y) + (yi − ŷi )

Stare at the last equation for a while. Looks familiar?

Deviation from mean observed outcome = Deviation from fit for
predicted values + Model residual

The above equality can be expressed in terms of the sum of squares;
the proof is messy. Your textbook skips several steps; see Wooldridge
Chapter 2
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Partitioning variance

We need to define the following terms

Total sum of squared deviations: SST =
∑n

i=1(yi − ȳ)2

Sum of squares due to the regression: SSR =
∑n

i=1(ŷi − ¯̂y)2

Sum of squared residuals (errors): SSE =
∑n

i=1(yi − ŷ)2

We can then write (yi − ȳ) = (ŷi − ¯̂y) + (yi − ŷi ) as

SST = SSR + SSE

SST/(n-1) is the sample variance of the outcome y

SSR/(n-1) is the sample variance of the predicted values ŷ

SSE/(n-1) is the sample variance of the residuals (but really, divided
by n − 2)

Confusion alert: in SSR, “R” stands for regression. In SSE, E stands
for error, even though it should be “residual,” not errors. Wooldridge
uses SSE for ”explained” or regression. And then Stata uses other
labels...
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Partitioning variance

SST = SSR + SSE is telling us that the observed variance of the
outcome was partitioned into two parts, one that is explained by our
model (SSR) and another that our model cannot explain (SSE)

So we could then measure how good our model is by the ratio SSR
SST

(goodness of fit)

In other words, the fraction of the total observed variance of the
outcome that is explained by our model. That’s the famous R2:

R2 = SSR
SST = 1 − SSE

SST

Another way: total observed variance = explained variance +
unexplained variance
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Understanding linear regression
A newspaper article argued that Chicago’s traffic is one of the most
unpredictable in the nation. A commute that on average takes about
20 minutes can take 15, 40, 60, or even 120 minutes some days

Say commuting time is the outcome y . What the article meant is
that commuting time is highly variable. So SST/(n − 1) is high.
Same as: the sample variance or standard deviation of y , s2, is
high. But it’s NOT unpredictable

You could develop a statistical model that explains y using weather
(snow, rain) as predictor along with accidents, downtown events, day
of week, time of day, and road work

Once you estimate this model, SSE (unexplained/residual variance)
will be smaller than a model without these predictors, and R2 will be
higher

In other words, our model has explained some of the observed
variability in commuting times. I can’t emphasize enough how
important it is to understand these concepts
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Calculate using Stata

Replicate R2 in Stata output from Analysis of Variance (ANOVA)
table (see added labels to the left)

reg colgpa hsgpa

sum of squares mean SS

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(1, 139) = 28.85

(R) Model | 3.33506006 1 3.33506006 Prob > F = 0.0000

(E) Residual | 16.0710394 139 .115618988 R-squared = 0.1719

-------------+---------------------------------- Adj R-squared = 0.1659

(T) Total | 19.4060994 140 .138614996 Root MSE = .34003

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4824346 .0898258 5.37 0.000 .304833 .6600362

_cons | 1.415434 .3069376 4.61 0.000 .8085635 2.022304

------------------------------------------------------------------------------

. * replicate R^2

. di 3.33506006/19.4060994

.17185628

. di 1 - (16.0710394/19.4060994 )

.17185628
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Calculate using Stata

Replicate Mean Square Error, which is the unexplained variability of
the model

reg colgpa hsgpa

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(1, 139) = 28.85

Model | 3.33506006 1 3.33506006 Prob > F = 0.0000

Residual | 16.0710394 139 .115618988 R-squared = 0.1719

-------------+---------------------------------- Adj R-squared = 0.1659

Total | 19.4060994 140 .138614996 Root MSE = .34003

<... output omitted...>

. * Replicate root MSE. This is the remaining *unexplained* variability

. di sqrt((16.0710394/139))

.34002792

* Compare to the variability without using hsgpa as a predictor (so just the variability of the outome, colgpa)

. sum colgpa

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

colgpa | 141 3.056738 .3723103 2.2 4
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We can go from explained and unexplained standard
deviation to R2

The trick is that the sum command is dividing by n− 1 so we need to
get the sum of squares. Root MSE divides by n − 2

. sum colgpa

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

colgpa | 141 3.056738 .3723103 2.2 4

* From the sum command, get SST

. di ((r(sd)^2)*(141-1))

19.406099

* From the regression output, use the model unexplained, Root MSE to get SSR

. di (((.34002792)^2)*139)

16.071039

* Combine so you can replicate R^2

. di 1 - (((.34002792)^2)*139) / ((r(sd)^2)*140)

.17185629
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Another way of understanding R2

Again, one way of defining R2 is that it is the ratio of the variation
explained by the model (SSR) to the total variability (SST)

It turns out that R2 is also the square of the correlation between the
observed y and its model-predicted values: cor(y , ŷ)2

qui reg colgpa hsgpa

predict colhat

(option xb assumed; fitted values)

. corr colhat colgpa

(obs=141)

| colhat colgpa

-------------+------------------

colhat | 1.0000

colgpa | 0.4146 1.0000

. di 0.4146^2

.17189316

The better our model is at predicting y the higher R2 will be
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Confidence Intervals

We want to build a confidence interval for β̂

The proper interpretation of a confidence interval in the frequentist
approach is that if we repeated the experiment many times, about x%
percent of the time the value of β would be within the confidence
interval

By convention, we build 95% confidence intervals, which implies
α = 0.05

Intuitively, we need to know the distribution of β̂ and its precision,
the standard error. To derive these, we need to assume ε distributes
N(0, σ2) iid

A formula for the confidence interval of β̂i is:

β̂i ± t(n−2,α/2)se(β̂i )

We saw that t(n−2,α/2) in the context of Wald tests. In the normal,
it’s 1.98

12



Confidence Intervals

We use t-student but remember that when n is large (larger than
about 120) the t distribution approximates a normal distribution

Recall this graph from stats 101 and Wikipedia :
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Direct relationship between statistical tests and confidence
intervals

Confidence intervals and statistical tests are closely related

reg colgpa hsgpa

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4824346 .0898258 5.37 0.000 .304833 .6600362

_cons | 1.415434 .3069376 4.61 0.000 .8085635 2.022304

------------------------------------------------------------------------------

. test hsgpa = .304833

( 1) hsgpa = .304833

F( 1, 139) = 3.91

Prob > F = 0.0500

. test hsgpa = .31

( 1) hsgpa = .31

F( 1, 139) = 3.69

Prob > F = 0.0570

. test hsgpa = .29

( 1) hsgpa = .29

F( 1, 139) = 4.59

Prob > F = 0.0339

Remember this: If the number θ0 in null H0 : βj = θ0 is within
95%CI , we won’t reject a null for that value; if the number is outside
CI, we will reject
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As usual, simulations are awesome

* simulate 9000 observations

set obs 9000

gen betahsgpa = rnormal(.4824346,.0898258)

sum

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

betahsgpa | 9,000 .4826007 .0900429 .1583372 .9124259

* count the number of times beta is within the confidence interval

count if betahsgpa >= .304833 & betahsgpa <= .6600362

8,552

di 8552/9000

.95022222

* Do the same with a t-student

. gen zt = rt(139)

. * By default, Stata simulate a standard t, mean zero and sd of 1

sum zt

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

zt | 9,000 .0019048 .9972998 -3.567863 3.574553

. * Need to retransform

gen betat = .0898258*zt + .4824346

sum betat

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

betat | 9,000 .4826057 .0895833 .1619485 .8035216

count if betat >= .304833 & betat <= .6600362

8,576

. di 8576/9000

.95288889
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What just happened?

We estimated a parameter β̂ and its standard error
√
var(β̂)

Because of assumptions about ε distributing N(0, σ2) we know that
asymptotically β̂ distributes normal (but the Wald test distributes
t-student)

That’s all we need to calculate confidence intervals and hypotheses
tests about the true β in the population

Recall that a probability distribution function describes the values a
random variable can take and the probability of those values. So we
can make statements about the probability of the parameter taking
certain values or being within an interval if we know the distribution
of the parameter

We also know that the t-student converges to a normal for samples
larger than about 120, so we could just use the normal distribution
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Distributions

Note the slightly fatter tails of the t-student

17



We can do more

Other confidence intervals?
centile betahsgpa, centile(2.5(5)97.5)

-- Binom. Interp. --

Variable | Obs Percentile Centile [95% Conf. Interval]

-------------+-------------------------------------------------------------

betahsgpa | 9,000 2.5 .3028123 .2985525 .3087895

| 7.5 .3527713 .3494937 .3565182

| 12.5 .3789864 .375991 .3828722

| 17.5 .3990816 .3966145 .4013201

| 22.5 .4146384 .4117871 .4172412

| 27.5 .428773 .4263326 .4314667

| 32.5 .4425001 .440095 .4447364

| 37.5 .4546066 .4523425 .4566871

| 42.5 .466314 .4637115 .4679226

| 47.5 .4773481 .4747118 .4795888

| 52.5 .4890074 .486511 .4909871

| 57.5 .4991535 .4969174 .5015363

| 62.5 .5109765 .5086741 .5133994

| 67.5 .5230142 .5210292 .5253365

| 72.5 .5359863 .5334756 .5384137

| 77.5 .5504502 .5473233 .5534496

| 82.5 .5673794 .5640415 .5700424

| 87.5 .5862278 .5831443 .589366

| 92.5 .6109914 .6076231 .6150107

| 97.5 .6565534 .6518573 .6633566

Note how close the 2.5 and 97.5 percentiles follow the reg CI above
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Even more

What is the probability that the coefficient for hsgpa is greater than
0.4? Greater than 0.8?
. count if betahsgpa >0.4

7,394

. di 7394/9000

.81822222

count if betahsgpa >0.8

2

di 2/9000

.00022222

Fairly likely and fairly unlikely, respectively (look at distribution)

We have no evidence that the coefficient will be remotely close to
zero so no surprise about the p-value in the regression output

Caution: We only have one predictor/covariate here. With more,
there is a correlation between β̂j . They distribute multivariate normal
with a variance-covariance matrix. We will see examples
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What about Type II error?

The other error we can make when testing hypotheses is Type II
error

Type II: failing to reject the null when in fact is false

We saw that the power of a test is 1-P(Type II)

When are we going to fail to reject the null even if it’s false?
Intuitively, when the confidence interval is wide

With a very wide CI, more values are going to be within the CI so
they won’t get rejected; they are likely to happen at α = 0.05

And when is the confidence interval going to be wide? Look at the
formula for CI: when t() or se() are larger. Both depend on sample
size

When doing power analysis, we’re mainly concerned about
determining the sample size we need to avoid Type II error
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Loose ends

We have only one thing left to explain and replicate from the
regression output. What is that F test?
In the grades example:

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(1, 139) = 28.85

Model | 3.33506006 1 3.33506006 Prob > F = 0.0000

Residual | 16.0710394 139 .115618988 R-squared = 0.1719

-------------+---------------------------------- Adj R-squared = 0.1659

Total | 19.4060994 140 .138614996 Root MSE = .34003

That’s a test of the overall validity of the model. The null is that
β1 = ... = βj = 0. Here, only one, so Ho : β1 = 0

It’s the ratio MSR/MSE = 3.33506006/.115618988 = 28.845263 (so
regression/model to residual). As you know by now, it is F because it
is the ratio of two chi-squares

Once we cover maximum likelihood we we will see another more
general approach to compare models, the likelihood ratio test

Both test are (asymptotically) equivalent
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Preview

F test versus LRT (I chose male as predictor so the p-value is not
close to zero)
reg colgpa male

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(1, 139) = 0.82

Model | .113594273 1 .113594273 Prob > F = 0.3672

Residual | 19.2925052 139 .138795001 R-squared = 0.0059

-------------+---------------------------------- Adj R-squared = -0.0013

Total | 19.4060994 140 .138614996 Root MSE = .37255

<... output omitted...>

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

male | -.0568374 .0628265 -0.90 0.367 -.1810567 .0673818

_cons | 3.086567 .0455145 67.82 0.000 2.996577 3.176557

------------------------------------------------------------------------------

est sto m1

qui reg colgpa

est sto m2

. lrtest m1 m2

Likelihood-ratio test LR chi2(1) = 0.83

(Assumption: m2 nested in m1) Prob > chi2 = 0.3629

Three tests in one, all close to 0.36. Since we only have one
predictor/covariate, the null of the overall F test is that β1 = 0, same
as Wald test
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Summary

Linear regression can be thought of as partitioning the variance into
two components, explained and unexplained

We can measure the goodness of fit of a model based on the
comparison of these variances

Be carefully about the context. We are talking about a linear
model with ε N(0, σ2) and iid

Not the same in other type of models but the main ideas are valid

Once we know the asymptotic distribution of a parameter and its
standard deviation (i.e. standar error) we have all we need to test
hypotheses and build CIs
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