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Big picture

We used the method of least squares to find the line that minimizes
the sum of square errors (SSE)

We made NO assumptions about the distribution of ε or Y

We saw that the mean of the predicted values is the same as the
mean of the observed values and that implies that predictions
regress towards the mean

Today, we will assume that ε distributes N(0, σ2) and are independent
(iid). We need that assumption for inference (not to find the best
βj)
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Algebraic properties of OLS

1) The sum of the residuals is zero:
∑n

i=1 ε̂i = 0. One implication of
this is that if the residuals add up to zero, then we will always get the
mean of Y right.

Confusion alert: ε is the error term; ε̂ is the residual (more on this
later)

Recall the first order conditions:
∂SSE
∂β0

=
∑n

i=1(yi − β̂0 − β̂1xi ) = 0

∂SSE
∂β1

=
∑n

i=1 xi (yi − β̂0 − β̂1xi ) = 0

From the first one, it’s obvious that we choose β̂0, β̂1 that satisfy this
property:

∑n
i=1(yi − β̂0 − β̂1xi ) =

∑n
i=1 ε̂i = 0, so ¯̂ε = 0

In words: On average, the residuals or predicted errors are zero, so on
average the predicted outcome ŷ is the same as the observed y . On
average we don’t make prediction errors
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Algebraic properties of OLS

2) The sample covariance between the residuals and the regressor x is
zero

This follows from the second first first order condition above:∑n
i=1 xi (yi − β0 − β1xi ) =

∑n
i=1 xi ε̂i = 0

Note that to calculate the covariance, we would only need to subtract
x̄ and ¯̂ε, which are constants. We just saw that ¯̂ε = 0

So cov(ε̂, x) = 0
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Algebraic properties of OLS

Let’s verify these properties with the college grades example

qui reg colgpa hsgpa

predict colhat

* Two ways of calculating residuals

gen res = colgpa - colhat

predict resgpa, r

sum resgpa

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

resgpa | 141 1.47e-10 .3388114 -.8521981 .8855062

corr resgpa hsgpa

(obs=141)

| resgpa hsgpa

-------------+------------------

resgpa | 1.0000

hsgpa | 0.0000 1.0000
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Hypothesis testing reminder

We start with a null hypothesis or a statement about the
population parameter than you want to test for

We assume that the null hypothesis is true until the data provides
evidence that it is not; similar to the way the criminal justice system
treats a defendant (innocent until proven guilty by evidence)

We denote the null hypothesis as H0. For example, we are interested
in testing if the population parameter is equal to zero, so we write:
H0 : β1 = 0 (note that we don’t write H0 : β̂1 = 0)

We will use β̂1 and the precision of the estimate of β̂1,
√

var(β̂1) as

evidence (what is the “precision” called?)

We also need an alternative hypothesis, which is usually H1 6= 0
(two-tailed test) or H1 > 0 or H1 < 0 (one-tailed test)
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Hypothesis testing reminder

We will either accept or reject the null hypothesis given the evidence,
which doesn’t necessarily make the alternative hypothesis true

We can make two mistakes. We can reject the null when in fact it’s
true, which is analogous to the mistake of rejecting the innocence of
a person on trial when in fact the person is innocent. We call this
mistake Type I error

The significance level of the test, α, is the probability of Type I
error: α = P(rejectH0|H0true)

We want to make this error as small as possible and by convention
it’s often set at α = 5%, although α = 10% is acceptable in some
disciplines (e.g. economics)

Think of a clinical trial. Suppose that the drug has no effect. Why do
we want to make this error small?
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Hypothesis testing reminder

The other error is failing to reject the null when in fact is false; this is
called the Type II error

We also want to minimize this error

As an alternative, we would like to maximize the power of the test,
which is 1− P(TypeII )

In other words, we want to make sure that we have enough evidence
to reject the null

Sample size plays a key role. The larger the sample size the more
“power” we have, so we are confident that we will be able to reject
the null
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Hypothesis testing reminder

We also need to choose a test statistic and a critical value

A test statistic, denoted by T , is a function of the random sample; a
particular number for the test statistic is denoted by t

A more intuitive explanation for the test statistic is that it’s a
standardized value calculated from the sample data that is used
as evidence to accept or reject a null hypothesis

We are essentially interested in figuring out: How likely is it that we
will find a test statistic t given that the null hypothesis is true? To
answer this question given a level of α we need to know the
distribution of t under the null
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Hypothesis testing reminder

That’s how you learned to do a test in stats 101: calculate t statistic
and compare it to a critical value from a table at the end of the book
(you will do so for the homework). If the t statistic falls outside a
rejection region, you reject the null

With the use of statistical software came the convenience of using
p-values instead

P-value: What is the largest significance level at which we could
carry out the test and still fail to reject the null hypothesis?

Now we just look at the p-value for a statistic: if p-value ≥ 0.05, then
we do not reject the null at α = 0.05

In economics, a p-value of < 0.1 is still quite acceptable

So, how do you choose a test statistics? Where do they come
from? Answer: from theory
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Wald tests

Wald tests come up in parametric models in which parameters are
estimated to model a relationship

Using the estimated parameters from the sample, we can perform
statistical tests of the true population value of a parameter θ

They have the form:

t = θ̂−θ0√
var(θ̂)

,

where θ0 is the value of θ we want to test for

Often, we want to test θ0 = 0 so the Wald test is

t = θ̂√
var(θ̂)

= θ̂

se(θ̂)
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Intuition

Look at the formula for the Wald test. When is the null more likely to

be rejected? t = θ̂−θ0
se(θ̂)

The largest the t the more likely that the test is rejected given a
significance level. So:

1 If θ̂ − θ0 is large, or alternatively, if the value of the null hypothesis is
far from the estimated value from the sample

2 If se(θ̂) is small; if se(θ̂) is large we will reject because we don’t have
enough solid evidence (the estimate of the true parameter is uncertain)

se(θ̂) is a function of the sample size n. With large datasets, se(θ̂)
will be small so we will tend to reject the null even for small θ̂ − θ0
This is a (hot) current area of research (navel gazing?) in statistics
and “big data.” Should we use conventional statistical inference?Most
differences are statistically significant when you have millions of
observations
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Wald tests

We need to figure out how t distributes under the null hypothesis

In the linear model, it distributes t-student (in the logistic model it
will distribute standard normal)

How do we know that? This is when we need to make assumptions
about the distribution of the error: To find the asymptotic
properties of the OLS estimators, we assume that εi are iid and
distribute N(0, σ2)

Note that we assume σ2 and not σ2i ; all observations have the same
variance (homoskedasticy)

Technical note: The Wald test and CIs are based on the coefficients
βj distributing normal. Yet, this is an approximation that depends on
sample size and other assumptions

Confusion alert: “t” is for test statistic in this context, which in
the OLS model happens to distribute t-student
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Digression and clarification

The Wald test can also be written as t = (θ̂−θ0)2

se(θ̂)

The intuition is the same. The difference is that the the test statistics
distribution is different (F distribution). Without the square in the
numerator, the test statistics distributes t-student

Remember from the review of stats class: the ratio of two
chi-squares distributions distributes F. The ratio of a normal to a
Chi-square distributes t-student.

Not the only type of hypothesis test. We will see another way of
performing the same test using the Likelihood Ratio Test (LRT)
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Digression and clarification II

See Buse (1982) and Engle (1984) for more on Wald tests versus
LRT. It may not be clear until we cover MLE so you could skip those
for a while (we would need to talk about Fisher information matrix
too...)

You could see the Wald test as the distance weighted by the
curvature of the MLE: t = (θ̂ − θ0)2C (θ)

But this test statistics is an approximation that may not work well
when θ and θ̂ are far apart or when the curvature of the log-likelihood
(approximated by C (θ̂) is more flat (more uncertain)

BUT: Wald and LRT are asymptotically equivalent. The general
consensus is that LRTs are better with smaller sample sizes, but in
modern applications we seldom use small samples anymore
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Examples

Stata displays Wald tests (and CIs) for all estimation commands

reg colgpa hsgpa

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(1, 139) = 28.85

Model | 3.33506006 1 3.33506006 Prob > F = 0.0000

Residual | 16.0710394 139 .115618988 R-squared = 0.1719

-------------+---------------------------------- Adj R-squared = 0.1659

Total | 19.4060994 140 .138614996 Root MSE = .34003

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4824346 .0898258 5.37 0.000 .304833 .6600362

_cons | 1.415434 .3069376 4.61 0.000 .8085635 2.022304

------------------------------------------------------------------------------

The P > |t| column is a two-tailed Wald test for β = 0. Please
never forget that in that test the null is H0 : β = 0

A story so you remember...
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Examples

The t-student distribution depends on sample size (degrees of
freedom), but with larger samples it converges to a standard
normal

If you recall stats 101, the two-tailed rejection at α = 0.05 is 1.96
with a standard normal

With the t-student and 120 df it is 1.98. With 10 it’s 2.23; see table
A.2 of your textbook

Of course, we do not need tables now. We use p-values but we can
also use Stata

di invttail(10,0.025)

2.2281389

di invttail(120,0.025)

1.9799304

di invttail(300,0.025)

1.967903
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Tests in Stata

Stata has a post-estimation command called “test” that is extremely
flexible; you can do all sort of tests with the coefficients of a model
(type “help test”)

. reg colgpa hsgpa male

<...ouput omitted...>

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4848333 .092151 5.26 0.000 .3026229 .6670437

male | .00738 .058826 0.13 0.900 -.1089369 .1236969

_cons | 1.4034 .3226199 4.35 0.000 .7654822 2.041317

------------------------------------------------------------------------------

. test male

( 1) male = 0

F( 1, 138) = 0.02

Prob > F = 0.9003

. test male = 1

( 1) male = 1

F( 1, 138) = 284.73

Prob > F = 0.0000

* Replicate p-value

. display ttail(139,0.13)*2

.89675437

. display ttail(139,(.00738/.058826 ))*2

.90034483
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Tests in Stata

As you can tell, Stata is not showing a t-student tests but rather F
tests

That’s because Stata is performing a Wald test squaring the
numerator

The Wald test in outpout is an F test with 1 numerator degree of
freedom and 138 denominator degrees of freedom. The Student’s t
distribution is directly related to the F distribution. The square of the
Student’s t distribution with d degrees of freedom is equivalent to the
F distribution with 1 numerator degree of freedom and d denominator
degrees of freedom
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Tests in Stata and confusion alert
I’m about to confuse you (again) so pay attention

Although we often see the Wald test in the context of testing for the
significance of one model parameter, the Wald test can be used to
test the significance of a linear combination of parameters

In the model yi = β0 + β1x1i + β2x2i + εi , we could use the Wald test
for Ho : β1 = β2 = 0. Stata syntax would be “test x1 x2”

This Wald test in the linear model distributes F (in the logistic model,
Chi-square)

We will cover next class the F test of the overall significance of a
linear model. You have seen this one before: it uses sum of squares of
model versus sum of squares of the errors/residuals. It’s used in
ANOVA, ANCOVA

Although you arrive at the same place, not the same tests. During
the semester, we will use Wald tests and LRTs because I want to
teach you an approach to modeling you can use with the linear model
AND logit, probit, survival, GLM, and most other common models...
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SRL, conditional expectation, and causal inference

We could just take the conditional expectation of the population
model Y = β0 + β1X + ε:

E [Y |X ] = β0 + β1X + E [ε|X ]

E [ε|x ] is not automatically zero; we need to assume it is: (zero
conditional mean assumption)

It turns out,though, that the real assumption is not E [ε|x ] = 0 but
rather E [ε|x ] = E [ε]

That is, the error term is independent of x ; think of this as the error
term ε being uncorrelated with any function of x (remember that
correlation only measures a linear association)

Without this assumption, we can’t ”hold” other factors constant
because the error is correlated with the x
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Example

Suppose we want to estimate wage = β0 + β1educ + ε, where wage is
measured in dollars per hour and educ is years of education

We expect that β1 is positive. The average wage is higher with more
years of education

But can we really hold other factors equal? What about
ability/intelligence? Let’s say ε = ability = a

E [a|educ] = E [a] doesn’t hold. The average expected level of ability
is not the same for every level of education; alternative, ability and
years of education are correlated

Ability is a confounder. An economist would say that education is
endogenous or the model is not identified

What is the effect on β̂1? Probably overestimated... more on
omitted variable bias
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Confusion

Note how confusing this is. At the beginning of the class we showed
that X is uncorrelated with ε̂ and that the sum of the residuals is
zero. This is always true

Now I’m telling you that we need to assume this to interpret SLR as
a conditional expectation function

It’s not that confusing when you realize that the zero conditional
mean assumption is an assumption about the population, not a
property of the sample

It’s an assumption about whether our estimated model can have a
ceteris paribus or causal interpretation in the population

This is another way of understanding no unmeasured confounder:
E [ε|x ] = E [ε] if we didn’t omit a confounder in the regression
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Summary

Several algebraic properties of OLS are direct consequences of the
first order conditions

To perform statistical tests, we need to figure out the distribution of
the parameters and their standard errors and also the distribution of
the test statistic under the null

To derive the statistical properties of the estimated coefficients, we
need to assume normality of the errors, which is equivalent to assume
that the outcome distributes normal

To interpret our estimated model as holding other factors constant
(ceteris paribus), the zero conditional mean assumption must hold in
the population

Next class, more about goodness of fit
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