Week 4: Simple Linear Regression II

Marcelo Coca Perraillon

University of Colorado Anschutz Medical Campus

Health Services Research Methods I HSMP 7607 2019

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.

Updated notes are here: https://clas.ucdenver.edu/marcelo-perraillon/ teaching/health-services-research-methods-i-hsmp-7607

Outline

- Algebraic properties of OLS
- Reminder on hypothesis testing
- The Wald test
- Examples
- Another way at looking at causal inference

Big picture

- We used the method of least squares to find the line that minimizes the sum of square errors (SSE)
- We made NO assumptions about the distribution of ϵ or Y
- We saw that the mean of the predicted values is the same as the mean of the observed values and that implies that predictions regress towards the mean
- Today, we will assume that ϵ distributes $N(0, \sigma^2)$ and are independent (iid). We need that assumption for inference (not to find the best β_j)

Algebraic properties of OLS

- 1) The sum of the residuals is zero: ∑ⁿ_{i=1} ĉ_i = 0. One implication of this is that if the residuals add up to zero, then we will always get the mean of Y right.
- **Confusion alert**: *ϵ* is the error term; *ϵ̂* is the residual (more on this later)
- Recall the first order conditions:

$$\frac{\partial SSE}{\partial \beta_0} = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
$$\frac{\partial SSE}{\partial \beta_1} = \sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

- From the first one, it's obvious that we choose \(\heta_0, \heta_1\) that satisfy this property: \(\sum_{i=1}^n(y_i \heta_0 \heta_1x_i) = \sum_{i=1}^n \heta_i = 0\), so \(\bar{\eta} = 0\)
- In words: On average, the residuals or predicted errors are zero, so on average the predicted outcome ŷ is the same as the observed y. On average we don't make prediction errors

Algebraic properties of OLS

- 2) The sample covariance between the residuals and the regressor x is zero
- This follows from the second first first order condition above: $\sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i) = \sum_{i=1}^{n} x_i \hat{\epsilon}_i = 0$
- Note that to calculate the covariance, we would only need to subtract \bar{x} and $\bar{\hat{\epsilon}}$, which are constants. We just saw that $\bar{\hat{\epsilon}} = 0$
- So $cov(\hat{\epsilon}, x) = 0$

Algebraic properties of OLS

Let's verify these properties with the college grades example

hsgpa | 0.0000 1.0000

- We start with a null hypothesis or a statement about the population parameter than you want to test for
- We assume that the null hypothesis is true until the data provides evidence that it is not; similar to the way the criminal justice system treats a defendant (innocent until proven guilty by evidence)
- We denote the null hypothesis as H₀. For example, we are interested in testing if the population parameter is equal to zero, so we write: H₀ : β₁ = 0 (note that we don't write H₀ : β̂₁ = 0)
- We will use $\hat{\beta}_1$ and the precision of the estimate of $\hat{\beta}_1$, $\sqrt{var(\hat{\beta}_1)}$ as evidence (what is the "precision" called?)
- We also need an alternative hypothesis, which is usually $H_1 \neq 0$ (two-tailed test) or $H_1 > 0$ or $H_1 < 0$ (one-tailed test)

- We will either accept or reject the null hypothesis given the evidence, which doesn't necessarily make the alternative hypothesis true
- We can make two mistakes. We can reject the null when in fact it's true, which is analogous to the mistake of rejecting the innocence of a person on trial when in fact the person is innocent. We call this mistake Type I error
- The significance level of the test, α, is the probability of Type I error: α = P(rejectH₀|H₀true)
- We want to make this error as small as possible and by convention it's often set at α = 5%, although α = 10% is acceptable in some disciplines (e.g. economics)
- Think of a clinical trial. Suppose that the drug has no effect. Why do we want to make this error small?

- The other error is failing to reject the null when in fact is false; this is called the Type II error
- We also want to minimize this error
- As an alternative, we would like to maximize the **power of the test**, which is 1 P(TypeII)
- In other words, we want to make sure that we have enough evidence to reject the null
- Sample size plays a key role. The larger the sample size the more "power" we have, so we are confident that we will be able to reject the null

- We also need to choose a test statistic and a critical value
- A **test statistic**, denoted by *T*, is a function of the random sample; a particular number for the test statistic is denoted by *t*
- A more intuitive explanation for the test statistic is that it's a standardized value calculated from the sample data that is used as evidence to accept or reject a null hypothesis
- We are essentially interested in figuring out: How likely is it that we will find a test statistic t given that the null hypothesis is true? To answer this question given a level of α we need to know the distribution of t under the null

- That's how you learned to do a test in stats 101: calculate t statistic and compare it to a critical value from a table at the end of the book (you will do so for the homework). If the t statistic falls outside a rejection region, you reject the null
- With the use of statistical software came the convenience of using p-values instead
- P-value: What is the largest significance level at which we could carry out the test and still fail to reject the null hypothesis?
- Now we just look at the p-value for a statistic: if p-value ≥ 0.05, then we do not reject the null at $\alpha = 0.05$
- In economics, a p-value of < 0.1 is still quite acceptable
- So, how do you choose a test statistics? Where do they come from? Answer: from theory

Wald tests

- Wald tests come up in parametric models in which parameters are estimated to model a relationship
- Using the estimated parameters from the sample, we can perform statistical tests of the true population value of a parameter θ
- They have the form:

$$=rac{\hat{ heta}- heta_0}{\sqrt{ extsf{var}(\hat{ heta})}},$$

t

where θ_0 is the value of θ we want to test for

• Often, we want to test $\theta_0 = 0$ so the Wald test is $t = \frac{\hat{\theta}}{\hat{\theta}} = \frac{\hat{\theta}}{\hat{\theta}}$

$$T = rac{ heta}{\sqrt{\mathsf{var}(\hat{ heta})}} = rac{ heta}{\mathsf{se}(\hat{ heta})}$$

Intuition

- Look at the formula for the Wald test. When is the null more likely to be rejected? $t = \frac{\hat{\theta} \theta_0}{se(\hat{\theta})}$
- The largest the t the more likely that the test is rejected given a significance level. So:
 - 1 If $\hat{\theta} \theta_0$ is large, or alternatively, if the value of the null hypothesis is far from the estimated value from the sample
 - 2 If se(θ̂) is small; if se(θ̂) is large we will reject because we don't have enough solid evidence (the estimate of the true parameter is uncertain)
- $se(\hat{\theta})$ is a function of the sample size *n*. With large datasets, $se(\hat{\theta})$ will be small so we will tend to reject the null even for small $\hat{\theta} \theta_0$
- This is a (hot) current area of research (navel gazing?) in statistics and "big data." Should we use conventional statistical inference? Most differences are statistically significant when you have millions of observations

Wald tests

- We need to figure out how t distributes **under the null** hypothesis
- In the linear model, it distributes t-student (in the logistic model it will distribute standard normal)
- How do we know that? This is when we need to make assumptions about the distribution of the error: To find the asymptotic properties of the OLS estimators, we assume that ε_i are iid and distribute N(0, σ²)
- Note that we assume σ² and not σ_i²; all observations have the same variance (homoskedasticy)
- Technical note: The Wald test and Cls are based on the coefficients β_j distributing normal. Yet, this is an approximation that depends on sample size and other assumptions
- Confusion alert: "t" is for test statistic in this context, which in the OLS model happens to distribute t-student

Digression and clarification

- The Wald test can also be written as $t = \frac{(\hat{\theta} \theta_0)^2}{se(\hat{\theta})}$
- The intuition is the same. The difference is that the the test statistics distribution is different (F distribution). Without the square in the numerator, the test statistics distributes t-student
- Remember from the review of stats class: the ratio of two chi-squares distributions distributes F. The ratio of a normal to a Chi-square distributes t-student.
- Not the only type of hypothesis test. We will see another way of performing the same test using the Likelihood Ratio Test (LRT)

Digression and clarification II

- See Buse (1982) and Engle (1984) for more on Wald tests versus LRT. It may not be clear until we cover MLE so you could skip those for a while (we would need to talk about Fisher information matrix too...)
- You could see the Wald test as the distance weighted by the curvature of the MLE: $t = (\hat{\theta} \theta_0)^2 C(\theta)$
- But this test statistics is **an approximation** that may not work well when θ and $\hat{\theta}$ are far apart or when the curvature of the log-likelihood (approximated by $C(\hat{\theta})$ is more flat (more uncertain)
- **BUT**: Wald and LRT are **asymptotically** equivalent. The general consensus is that LRTs are better with smaller sample sizes, but in modern applications we seldom use small samples anymore

Examples

Stata displays Wald tests (and Cls) for all estimation commands

reg colgpa hsgpa

Source	SS	df	MS	Number of o	bs =	141
+-				F(1, 139)	=	28.85
Model	3.33506006	1	3.33506006	Prob > F	=	0.0000
Residual	16.0710394	139	.115618988	R-squared	=	0.1719
+-				Adj R-squar	ed =	0.1659
Total	19.4060994	140	.138614996	Root MSE	=	.34003
colgpa	Coef.	Std. Err.	t P	 > t [95%	Conf.	Interval]
colgpa +-				> t [95%		Interval]
01						Interval] .6600362
+-			5.37 0		4833	

The P > |t| column is a two-tailed Wald test for β = 0. Please never forget that in that test the null is H₀ : β = 0
 A story so you remember...

Examples

- The t-student distribution depends on sample size (degrees of freedom), but with larger samples it converges to a standard normal
- If you recall stats 101, the two-tailed rejection at $\alpha = 0.05$ is 1.96 with a standard normal
- With the t-student and 120 df it is 1.98. With 10 it's 2.23; see table
 A.2 of your textbook
- Of course, we do not need tables now. We use p-values but we can also use Stata

```
di invttail(10,0.025)
2.2281389
di invttail(120,0.025)
1.9799304
di invttail(300,0.025)
1.967903
```

Tests in Stata

 Stata has a post-estimation command called "test" that is extremely flexible; you can do all sort of tests with the coefficients of a model (type "help test")

```
. reg colgpa hsgpa male
<....ouput omitted....>
                                            [95% Conf. Interval]
    colgpa |
             Coef. Std. Err. t P>|t|
______
           .4848333
                     .092151 5.26 0.000
     hsgpa
                                            .3026229
                                                       .6670437
                    .058826 0.13 0.900
     male | .00738
                                            -.1089369
                                                       1236969
                                            .7654822
     cons |
           1,4034 ,3226199 4,35 0,000
                                                       2.041317
                                                 _____
test male
(1) male = 0
     F(1, 138) =
                  0.02
         Prob > F = 0.9003
test male = 1
(1) male = 1
     F(1, 138) = 284.73
         Proh > F =
                  0.0000
* Replicate p-value
. display ttail(139,0.13)*2
89675437
. display ttail(139,(.00738/.058826 ))*2
.90034483
```

Tests in Stata

- As you can tell, Stata is not showing a t-student tests but rather F tests
- That's because Stata is performing a Wald test squaring the numerator
- The Wald test in outpout is an F test with 1 numerator degree of freedom and 138 denominator degrees of freedom. The Student's t distribution is directly related to the F distribution. The square of the Student's t distribution with d degrees of freedom is equivalent to the F distribution with 1 numerator degree of freedom and d denominator degrees of freedom

Tests in Stata and confusion alert

- I'm about to confuse you (again) so pay attention
- Although we often see the Wald test in the context of testing for the significance of one model parameter, the Wald test can be used to test the significance of a linear combination of parameters
- In the model $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$, we could use the Wald test for H_0 : $\beta_1 = \beta_2 = 0$. Stata syntax would be "test x1 x2"
- This Wald test in the linear model distributes F (in the logistic model, Chi-square)
- We will cover next class the F test of the overall significance of a linear model. You have seen this one before: it uses sum of squares of model versus sum of squares of the errors/residuals. It's used in ANOVA, ANCOVA
- Although you arrive at the same place, not the same tests. During the semester, we will use Wald tests and LRTs because I want to teach you an approach to modeling you can use with the linear model AND logit, probit, survival, GLM, and most other common models...

SRL, conditional expectation, and causal inference

- We could just take the conditional expectation of the **population** model $Y = \beta_0 + \beta_1 X + \epsilon$:
- $\blacksquare E[Y|X] = \beta_0 + \beta_1 X + E[\epsilon|X]$
- *E*[*ϵ*|*x*] is not automatically zero; we need to assume it is: (zero conditional mean assumption)
- It turns out,though, that the real assumption is not $E[\epsilon|x] = 0$ but rather $E[\epsilon|x] = E[\epsilon]$
- That is, the error term is **independent** of *x*; think of this as the error term *e* being **uncorrelated with any function** of *x* (remember that correlation only measures a linear association)
- Without this assumption, we can't "hold" other factors constant because the error is correlated with the x

Example

- Suppose we want to estimate wage = $\beta_0 + \beta_1 educ + \epsilon$, where wage is measured in dollars per hour and *educ* is years of education
- We expect that β₁ is positive. The average wage is higher with more years of education
- But can we really hold other factors equal? What about ability/intelligence? Let's say $\epsilon = ability = a$
- *E*[*a*|*educ*] = *E*[*a*] doesn't hold. The average expected level of ability is not the same for every level of education; alternative, ability and years of education are correlated
- Ability is a confounder. An economist would say that education is endogenous or the model is not identified
- What is the effect on $\hat{\beta}_1$? Probably overestimated... more on **omitted variable bias**

Confusion

- Note how confusing this is. At the beginning of the class we showed that X is uncorrelated with ê and that the sum of the residuals is zero. This is always true
- Now I'm telling you that we need to assume this to interpret SLR as a conditional expectation function
- It's not that confusing when you realize that the zero conditional mean assumption is an assumption about the population, not a property of the sample
- It's an assumption about whether our estimated model can have a ceteris paribus or causal interpretation in the population
- This is another way of understanding no **unmeasured confounder**: $E[\epsilon|x] = E[\epsilon]$ if we didn't omit a confounder in the regression

Summary

- Several algebraic properties of OLS are direct consequences of the first order conditions
- To perform statistical tests, we need to figure out the distribution of the parameters and their standard errors and also the distribution of the test statistic under the null
- To derive the statistical properties of the estimated coefficients, we need to assume normality of the errors, which is equivalent to assume that the outcome distributes normal
- To interpret our estimated model as *holding other factors constant* (*ceteris paribus*), the zero conditional mean assumption must hold in the population
- Next class, more about goodness of fit