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Outline

Putting a structure into exploratory data analysis

Covariance and correlation

Simple linear regression

Parameter estimation

Regression towards the mean
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Big picture

We did exploratory data analysis of two variables X , Y in the first
homework

Now we are going to provide structure to the analysis

We will assume a relationship (i.e. a functional form) and estimate
parameters that summarize that relationship

We will then test hypotheses about the relationship

For the time being, we will focus on two continuous variables
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Example data

We will use data from Wooldridge on grades for a sample 141 college
students (see today’s do file)

use GPA1.DTA, clear

sum colgpa hsgpa

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

colgpa | 141 3.056738 .3723103 2.2 4

hsgpa | 141 3.402128 .3199259 2.4 4
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Covariance and correlation

A simple summary of the relationship between two variables is the
covariance:

COV (X ,Y ) = E [(X − E (X )(Y − E (Y ))] = E (XY )− E (X )E (Y )

COV (X ,Y ) = 1
n−1

∑n
i=1(yi − ȳ)(xi − x̄)

For each pair xi , yi we calculate the product of the deviations of each
variable from its mean

The covariance will be closer to zero if observations are closer to their
mean (for one or both variables); it can be positive or negative

The scale is the product of the scales of Xand Y (e.g. age* age,
grades*age, etc)
. corr colgpa hsgpa, c

(obs=141)

| colgpa hsgpa

-------------+------------------

colgpa | .138615

hsgpa | .049378 .102353
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Graphical intuition?

If COV (X ,Y ) > 0 then positive relationship between x and y

If COV (X ,Y ) < 0 then negative relationship between x and y

6



Correlation

The sign of the covariance is useful but the magnitude is not because
it depends on the unit of measurement

The correlation (ρ) scales the covariance by the standard deviation
of each variable:

Cor(X ,Y ) = 1
n−1

∑n
i=1

(yi−ȳ)(xi−x̄)
SySx

Cor(X ,Y ) = COV (X ,Y )
SySx

−1 ≤ Cor(X ,Y ) ≥ 1

Closer to 1 or -1, stronger relationship
Grades data:

corr colgpa hsgpa

| colgpa hsgpa

-------------+------------------

colgpa | 1.0000

hsgpa | 0.4146 1.0000
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Examples

ρ close to 0 does NOT imply X and Y are not related

ρ measures the linear relationship between two variables
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Going beyond the correlation coefficient

We need more flexibility to understand the relationship between X
and Y ; the correlation is useful but it is limited to a linear relationship
and we can’t study changes in Y for changes in X using ρ

A useful place to start is assuming a more specific functional form:

Y = β0 + β1X + ε

The above model is the an example of simple linear regression
(SLR)

Confusion alert: it’s linear on the parameters βi ;
Y = β0 + β1X

2 + ε is also a SLR model

In the college grades example, we have n = 141 observations. We
could write the model as

yi = β0 + β1xi + εi , where i = 1, .., n. College grades is y and high
school grades is x
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The role of ε

yi = β0 + β1xi + εi , where i = 1, .., n

We are assuming that X and Y are related as described by the above
equation plus an error term ε

In general, we want the error, or the unexplained part of the
model, to be as small as possible

How do we find the optimal βj? One way is to find the values of β0

and β1 that are as close as possible to all the points xi , yi

These values are β̂0 and β̂1 the prediction is ŷ = β̂0 + β̂1x

This is equivalent to say that we want to make the ε as small as
possible

Obviously, the relationship is not going to be perfect so εi 6= 0 for
most observations
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Some possible lines (guesses)

I used a graphic editor to draw some possible lines; I wanted to draw
the lines as close as possible to most of the points

The line is affected by the mass of points and extreme values
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A more systematic way

The error will be the difference ε = (yi − ŷi ) for each point; we don’t
want a positive error to cancel out a negative one so we take the
square: ε2

i = (yi − ŷi )
2
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The method of ordinary least squares (OLS)

We want to find β̂i that minimizes the sum of all errors:

S(β0, β1) =
∑n

i=1 ε
2
i =

∑n
i=1(yi − ŷi )

2 =
∑n

i=1(yi − β̂0 − β̂1xi )
2

The solution is fairly simply with calculus. We solve the system of
equations:
∂S(β0,β1)

∂β0
= 0

∂S(β0,β1)
∂β1

= 0

The solution is β̂1 =
∑n

i=1(yi−ȳ)(xi−x̄)∑n
i=1(xi−x̄)2 and β0 = ȳ − β̂1x̄

To get predicted values, we use ŷi = β̂0 + β̂1xi

S(β0, β1) is also denoted by SSE, sum of squares for error
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Deriving the formulas

We start with:
∂SSE
∂β0

=
∑n

i=1(yi − β0 − β1xi )
2 = −2

∑n
i=1(yi − β0 − β1xi ) = 0

We can them multiply by −1
2 and distribute the summation:∑n

i=1 yi − nβ0 − β1
∑n

i=1 xi = 0

And almost there. Divide by n and solve for β0: β̂0 = ȳ − β1x̄

For β1, more steps but start with the other first order condition and
plug in β̂0

∂SSE
∂β1

= −2
∑n

i=1 xi (yi − β0 − β1xi ) = 0
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Interpreting the formulas

Does the formula for β̂1 look familiar?

β̂1 =
∑n

i=1(yi−ȳ)(xi−x̄)∑n
i=1(xi−x̄)2

We can multiply by 1/(n−1)
1/(n−1) and we get the formulas for the

covariance and variance:

β̂1 = COV (Y ,X )
Var(X )

Since Var(X ) > 0, the sign of β̂1 depends on COV (X ,Y )

If the X and Y are not correlated, then β̂1 = 0

So you can use a test for β̂1 = 0 as a test for correlation. But now
you have more flexibility and are not constrained to a linear
relationship correlation

For example, you could test if γ1 = 0 in Y = γ0 + γ1X
2
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Digression

Not the only target function to minimize. We could also work with
the absolute value, as in |yi − ŷi |. This is called the least absolute
errors regression; more robust to extreme values

Jargon alert: robust means a lot of things in statistics. Whenever
you hear that XYZ method is more robust, ask the following question:
robust to what? It could be missing values, correlated errors,
functional form...

A very fashionable type of model in prediction and machine learning is
the ridge regression (Lasso method, too)

It minimizes the sum of errors (yi − ŷi )
2 plus the sum of square betas

λ
∑j

i=1 β
2
j

It may look odd but we want to also make the betas as small as
possible as a way to select variables in the model
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Grades example

In Stata, we use the reg command:
. reg colgpa hsgpa

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(1, 139) = 28.85

Model | 3.33506006 1 3.33506006 Prob > F = 0.0000

Residual | 16.0710394 139 .115618988 R-squared = 0.1719

-------------+---------------------------------- Adj R-squared = 0.1659

Total | 19.4060994 140 .138614996 Root MSE = .34003

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4824346 .0898258 5.37 0.000 .304833 .6600362

_cons | 1.415434 .3069376 4.61 0.000 .8085635 2.022304

------------------------------------------------------------------------------

So β̂0 = 1.415434 and β̂1 = .4824346. A predicted value is
ŷi = 1.415434 + .4824346(xi = a)
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Grades example II
gen gpahat = 1.415434 + .4824346*hsgpa

gen gpahat0 = _b[_cons] + _b[hsgpa]*hsgpa

predict gpahat1

* ereturn list

* help reg

scatter colgpa hsgpa, jitter(2) || line gpahat1 hsgpa, color(red) sort ///

saving(reg1.gph, replace)
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How do observed and predicted values compare?
sum colgpa gpahat1

hist colgpa, percent title("Observed") saving(hisob.gph, replace) xline(3.06)

hist gpahat1, percent title("Predicted") saving(hispred.gph, replace) xline(3.06)

graph combine hisob.gph hispred.gph, col(1) xcommon

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

colgpa | 141 3.056738 .3723103 2.2 4

gpahat1 | 141 3.056738 .1543433 2.573277 3.345172

Predictions “regress” towards the mean:
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Regression towards the mean

Regression towards the mean is an often-misunderstood concept

In this example, our model is telling us that a student with a high
high-school GPA is going to be more like an average college student
(i.e. she will regress towards the mean)

Why is that happening? Look at the data. Is that true in our sample?

It happens because our prediction is using the information of
everybody in the sample to make predictions for those with high
high-school GPA

It may also be because it’s a property of the particular dataset or
problem, like in the homework example
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Confusion alert and iterated expectations

From OLS, it is not clear that we are modeling the conditional
expectation of Y given X : E [Y |X ] but WE ARE (!!)

We are modeling how the mean of Y changes for different values of X

The mean of the predictions from our model will match the
observed mean of Y
We can use the law of iterated expectations to go from the
conditional to unconditional mean of Y :
qui sum hsgpa

di 1.415434 + .4824346*r(mean)

3.0567381

.sum colgpa

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

colgpa | 141 3.056738 .3723103 2.2 4
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Another way of writing the model

When we cover Maximum Likelihood Estimation (MLE), it’s going to
become super clear that we are indeed modeling a conditional
expectation

For the rest of the semester and your career, it would be useful to
write the estimated model as E (ŷi |x) = β̂0 + β̂1x or E (ŷi ) = β̂0 + β̂1x

Next class we are going to start interpreting parameters. We will see
that β̂1 tells you how the expected value/average y changes when x
changes

This is subtle but super important. It’s not the change in y , it’s the
change in the average y

Seeing it this way will make it easier later (trust me)

To make it a bit more confusing: of course, we can use the model to
make a prediction for one person. Say, a college student with a hs
gpa of xx will have a college gpa of yy. But that prediction is based
on the average of others
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Big picture

We started with a graphical approach to study the relationship of two
continuous variables

We then used the correlation coefficient to measure the magnitude
and direction of the linear relationship

We then considered a more flexible approach by assuming a more
specific functional form and used the method of least squares to find
the best parameters

We now have a way of summarizing the relationship between X ,Y

We didn’t make any assumptions about the distribution of Y (or
X )

Don’t ever forget that we are modeling the conditional expectation
(!!)

Next class we will see other ways of thinking about SLR and causal
inference
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