Week 3: Simple Linear Regression

Marcelo Coca Perraillon

University of Colorado
Anschutz Medical Campus

Health Services Research Methods I HSMP 7607 2019

Outline

- Putting a structure into exploratory data analysis
- Covariance and correlation
- Simple linear regression
- Parameter estimation
- Regression towards the mean

Big picture

- We did exploratory data analysis of two variables X, Y in the first homework
- Now we are going to provide structure to the analysis
- We will assume a relationship (i.e. a functional form) and estimate parameters that summarize that relationship
- We will then test hypotheses about the relationship
- For the time being, we will focus on two continuous variables

Example data

- We will use data from Wooldridge on grades for a sample 141 college students (see today's do file)
use GPA1.DTA, clear
sum colgpa hsgpa
Variable |
Vabs
colgpa |
hsgpa |

Covariance and correlation

- A simple summary of the relationship between two variables is the covariance:
- $\operatorname{COV}(X, Y)=E[(X-E(X)(Y-E(Y))]=E(X Y)-E(X) E(Y)$
- $\operatorname{COV}(X, Y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)$

■ For each pair x_{i}, y_{i} we calculate the product of the deviations of each variable from its mean

■ The covariance will be closer to zero if observations are closer to their mean (for one or both variables); it can be positive or negative

- The scale is the product of the scales of X and Y (e.g. age* age, grades*age, etc)

```
. corr colgpa hsgpa, c
(obs=141)
\begin{tabular}{r|rr} 
& | colgpa & hsgpa \\
colgpa | & .138615 & \\
hsgpa | . 049378 & .102353
\end{tabular}
```


Graphical intuition?

- If $\operatorname{COV}(X, Y)>0$ then positive relationship between x and y
- If $\operatorname{COV}(X, Y)<0$ then negative relationship between x and y

Correlation

- The sign of the covariance is useful but the magnitude is not because it depends on the unit of measurement
- The correlation (ρ) scales the covariance by the standard deviation of each variable:
- $\operatorname{Cor}(X, Y)=\frac{1}{n-1} \sum_{i=1}^{n} \frac{\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{S_{y} S_{x}}$
- $\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{S_{y} S_{x}}$
- $-1 \leq \operatorname{Cor}(X, Y) \geq 1$
- Closer to 1 or -1 , stronger relationship
- Grades data:

corr colgpa hsgpa		
\| colgpa	hsgpa	
colgpa \|	1.0000	
hsgpa \|	0.4146	1.0000

Examples

- ρ close to 0 does NOT imply X and Y are not related
- ρ measures the linear relationship between two variables

Going beyond the correlation coefficient

- We need more flexibility to understand the relationship between X and Y; the correlation is useful but it is limited to a linear relationship and we can't study changes in Y for changes in X using ρ
- A useful place to start is assuming a more specific functional form:
- $Y=\beta_{0}+\beta_{1} X+\epsilon$
- The above model is the an example of simple linear regression (SLR)
■ Confusion alert: it's linear on the parameters β_{i}; $Y=\beta_{0}+\beta_{1} X^{2}+\epsilon$ is also a SLR model
■ In the college grades example, we have $n=141$ observations. We could write the model as
- $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, where $i=1, . ., n$. College grades is y and high school grades is x

The role of ϵ

- $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, where $i=1, . ., n$
- We are assuming that X and Y are related as described by the above equation plus an error term ϵ
- In general, we want the error, or the unexplained part of the model, to be as small as possible
- How do we find the optimal β_{j} ? One way is to find the values of β_{0} and β_{1} that are as close as possible to all the points x_{i}, y_{i}
- These values are $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$ the prediction is $\hat{y}=\hat{\beta_{0}}+\hat{\beta_{1}} x$

■ This is equivalent to say that we want to make the ϵ as small as possible
■ Obviously, the relationship is not going to be perfect so $\epsilon_{i} \neq 0$ for most observations

Some possible lines (guesses)

- I used a graphic editor to draw some possible lines; I wanted to draw the lines as close as possible to most of the points
- The line is affected by the mass of points and extreme values

A more systematic way

- The error will be the difference $\epsilon=\left(y_{i}-\hat{y_{i}}\right)$ for each point; we don't want a positive error to cancel out a negative one so we take the square: $\epsilon_{i}^{2}=\left(y_{i}-\hat{y_{i}}\right)^{2}$

The method of ordinary least squares (OLS)

- We want to find $\hat{\beta}_{i}$ that minimizes the sum of all errors:

$$
S\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y_{i}}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}} x_{i}\right)^{2}
$$

- The solution is fairly simply with calculus. We solve the system of equations:
$\frac{\partial S\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{0}}=0$
$\frac{\partial S\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{1}}=0$
■ The solution is $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ and $\beta_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$
- To get predicted values, we use $\hat{y_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} x_{i}$

■ $S\left(\beta_{0}, \beta_{1}\right)$ is also denoted by SSE, sum of squares for error

Deriving the formulas

- We start with:

$$
\frac{\partial S S E}{\partial \beta_{0}}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0
$$

- We can them multiply by $-\frac{1}{2}$ and distribute the summation:
$\sum_{i=1}^{n} y_{i}-n \beta_{0}-\beta_{1} \sum_{i=1}^{n} x_{i}=0$
- And almost there. Divide by n and solve for β_{0} : $\hat{\beta_{0}}=\bar{y}-\beta_{1} \bar{x}$
- For β_{1}, more steps but start with the other first order condition and plug in $\hat{\beta_{0}}$
$\frac{\partial S S E}{\partial \beta_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0$

Interpreting the formulas

- Does the formula for $\hat{\beta}_{1}$ look familiar?
$\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
- We can multiply by $\frac{1 /(n-1)}{1 /(n-1)}$ and we get the formulas for the covariance and variance:
$\hat{\beta_{1}}=\frac{\operatorname{Cov}(Y, X)}{\operatorname{Var}(X)}$
- Since $\operatorname{Var}(X)>0$, the sign of $\hat{\beta_{1}}$ depends on $\operatorname{COV}(X, Y)$
- If the X and Y are not correlated, then $\hat{\beta}_{1}=0$
- So you can use a test for $\hat{\beta_{1}}=0$ as a test for correlation. But now you have more flexibility and are not constrained to a linear relationship correlation
■ For example, you could test if $\gamma_{1}=0$ in $Y=\gamma_{0}+\gamma_{1} X^{2}$

Digression

- Not the only target function to minimize. We could also work with the absolute value, as in $\left|y_{i}-\hat{y}_{i}\right|$. This is called the least absolute errors regression; more robust to extreme values
- Jargon alert: robust means a lot of things in statistics. Whenever you hear that XYZ method is more robust, ask the following question: robust to what? It could be missing values, correlated errors, functional form...
- A very fashionable type of model in prediction and machine learning is the ridge regression (Lasso method, too)
- It minimizes the sum of errors $\left(y_{i}-\hat{y}_{i}\right)^{2}$ plus the sum of square betas $\lambda \sum_{i=1}^{j} \beta_{j}^{2}$
- It may look odd but we want to also make the betas as small as possible as a way to select variables in the model

Grades example

■ In Stata, we use the reg command:
. reg colgpa hsgpa

Source I	SS	df MS		Number of obs$F(1,139)$	141
					28.85
Model \|	3.33506006	1	3.33506006	Prob > F	0.0000
Residual \|	16.0710394	139	. 115618988	R -squared	0.1719
				Adj R-squared	0.1659
Total 1	19.4060994	140	. 138614996	Root MSE	. 34003
colgpa \|	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{tl} \quad[95 \%$ Conf	Interval]
hsgpa \|	. 4824346	. 0898258	5.37	0.000 .304833	. 6600362
_cons \|	1.415434	. 3069376	4.61	0.000 .8085635	2.022304

- So $\hat{\beta_{0}}=1.415434$ and $\hat{\beta_{1}}=.4824346$. A predicted value is $\hat{y}_{i}=1.415434+.4824346\left(x_{i}=a\right)$

Grades example II

gen gpahat $=1.415434+.4824346 *$ hsgpa
gen gpahat0 $=$ _b[_cons] + _b[hsgpa]*hsgpa
predict gpahat1

* ereturn list
* help reg
scatter colgpa hsgpa, jitter(2) || line gpahat1 hsgpa, color(red) sort /// saving(reg1.gph, replace)

How do observed and predicted values compare?

sum colgpa gpahat1
hist colgpa, percent title("Observed") saving(hisob.gph, replace) xline(3.06)
hist gpahat1, percent title("Predicted") saving(hispred.gph, replace) xline(3.06)
graph combine hisob.gph hispred.gph, col(1) xcommon

Variable \|	Obs	Mean	Std. Dev.	Min	Max
colgpa \|	141	3.056738	.3723103	2.2	4
gpahat1 \|	141	3.056738	.1543433	2.573277	3.345172

■ Predictions "regress" towards the mean:

Regression towards the mean

- Regression towards the mean is an often-misunderstood concept
- In this example, our model is telling us that a student with a high high-school GPA is going to be more like an average college student (i.e. she will regress towards the mean)
- Why is that happening? Look at the data. Is that true in our sample?
- It happens because our prediction is using the information of everybody in the sample to make predictions for those with high high-school GPA
- It may also be because it's a property of the particular dataset or problem, like in the homework example

Confusion alert and iterated expectations

- From OLS, it is not clear that we are modeling the conditional expectation of Y given $X: E[Y \mid X]$ but WE ARE (!!)
- We are modeling how the mean of Y changes for different values of X
- The mean of the predictions from our model will match the observed mean of Y
- We can use the law of iterated expectations to go from the conditional to unconditional mean of Y :

```
qui sum hsgpa
di 1.415434 + .4824346*r(mean)
3.0567381
.sum colgpa 
```


Another way of writing the model

- When we cover Maximum Likelihood Estimation (MLE), it's going to become super clear that we are indeed modeling a conditional expectation
- For the rest of the semester and your career, it would be useful to write the estimated model as $E\left(\hat{y_{i}} \mid x\right)=\hat{\beta_{0}}+\hat{\beta_{1}} x$ or $E\left(\hat{y}_{i}\right)=\hat{\beta_{0}}+\hat{\beta_{1}} x$
■ Next class we are going to start interpreting parameters. We will see that $\hat{\beta}_{1}$ tells you how the expected value/average y changes when x changes
■ This is subtle but super important. It's not the change in y, it's the change in the average y
- Seeing it this way will make it easier later (trust me)
- To make it a bit more confusing: of course, we can use the model to make a prediction for one person. Say, a college student with a hs gpa of $x x$ will have a college gpa of $y y$. But that prediction is based on the average of others

Big picture

- We started with a graphical approach to study the relationship of two continuous variables

■ We then used the correlation coefficient to measure the magnitude and direction of the linear relationship

- We then considered a more flexible approach by assuming a more specific functional form and used the method of least squares to find the best parameters
- We now have a way of summarizing the relationship between X, Y
- We didn't make any assumptions about the distribution of Y (or X)
- Don't ever forget that we are modeling the conditional expectation (!!)
- Next class we will see other ways of thinking about SLR and causal inference

