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Outline

The very basics of stats

Random variables; joint distributions

Independence, conditional distributions, conditional independence

Expected value, conditional expectation, variance

A model to understand statistical inference: population and samples

Properties of an estimator: bias, efficiency, and consistency
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Big picture

Carefully review Wooldridge Appendix A to C

Dust off your calculus notes for a refresher or see videos in Concepts
to Know

Do NOT focus on the mechanics. Do remember how to take basic
derivatives

Focus on concepts
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Basics

Rules of summation and averages

1
∑n

i=1 c = nc
2
∑n

i=1 cxi = c
∑n

i=1 xi
3
∑n

i=1(xi − x̄) = 0 (“demeaning”)
4
∑n

i=1(xi − x̄)2 =
∑n

i=1 x
2
i − nx̄2

5 And, of course: x̄ =
∑n

i=1
xi
n = 1

n

∑n
i=1 xi

Recall what is a linear function: y = a + bx

In a linear function: ∆y = b∆x

We use calculus for small changes: dy
dx = b
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Other functions

Quadratic: y = a + bx + cx2

Cubic: y = a + bx3

Polynomials: y = a + bx + cx2 + dx3 + ex4

Log function: y = log(x)

Exponential: y = exp(x)

Remember how to take the derivative of these functions
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As usual, Stata is your friend – learn to use Mathematica,
too

twoway function y= 5 + 2*x^2, range(-10 10) saving(gf1.gph, replace)

twoway function y= 5 - 2*x^2, range(-10 10) saving(gf2.gph, replace)

twoway function y= 5 + 2*x^3, range(-10 10) saving(gf3.gph, replace)

twoway function y= 5 - 2*x^3, range(-10 10) saving(gf4.gph, replace)

graph combine gf1.gph gf2.gph gf3.gph gf4.gph

graph export gf_all.png, replace
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Derivatives are easy to understand conceptually

The rules for derivatives come from the definition of the derivative

Limits are central to calculus

So, calculating the derivative of any function reduces to taking
the above limit. That’s it!

For example, the derivative of f (x) = log(x) is f ′(x) = 1
x

So the slope of log(x) is not constant (linear). At, say, x = 10, it’s
0.1. Note another thing. The larger x gets the smaller the slope gets.
Or in calculus jargon, the limit of f ′(x) when x tends to infinity is
zero. If x is small, the slope is large
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Remember the basics

The rules for derivatives are found by taking the limit of h tending to
zero:
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As I said, Stata is your BFF
twoway function y= log(x), range(-5 100000) saving(gf5.gph, replace)

graph export gf_log.png, replace
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What about integrals?
You learn sometimes that they are the opposite of the the derivative

We care here about the definitive integral, with is the area under a
curve

Break the area under a curve into rectangles and then make the
rectangles small

We use Reiman sums to approximate, summing over the area of the
small rectangles
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Random variables

A discrete random variable takes only a finite or countably infinite
number of values

We describe a random variable by listing the possible values it takes
and the probability of taking each of those values; probabilities must
add up to 1

The probability density function (pdf) is a summary of all the
possible outcomes and their probabilities

The simplest, Bernoulli: f (x ; p) = px(1− p)(1−x), where x ∈ {0, 1}
p is a parameter, which describes the probability of “success” or 1

The support, x , is the values a random variable can take: only 0, 1

Binomial has two parameters, n and p: f (k ; n, p) =
(n
k

)
pk(1− p)(n−k)
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Examples of discrete distributions
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Continuous random variables

A continuous random variable can take infinitely may values

The probability of taking a single value is zero (not exactly
intuitive)

So we can only calculate the probability of a range of values:
P(a ≤ X ≥ b) or P(a < X > b)

The most common example, normal distribution. The density

function is: f (x ;µ, σ) = 1√
2σ2π

exp(− (x−µ)2

2σ2 )

To calculate the probability we need to integrate:
P(a ≤ X ≥ b) =

∫ b
a f (x ;µ, σ)

Because probabilities must add up to 1:
∫ +∞
−∞ f (x ;µ, σ)dx = 1

Cumulative distribution function (cdf): F (x) = P(X ≤ x); for
normal:

∫ x
−∞ f (x ;µ, σ)
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Examples of continuous distributions
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Joint distributions

We often care about more than one random variable at a time

It’s straightforward to extend the notion of probability density
function to a joint probability density function:

For a discrete rv: fX ,Y (x , y) = P(X = x ;Y = y)

Needs to add up to 1:
∫
x

∫
y f (x , y)dxdy = 1, for continuous case

We won’t directly deal with joint distributions this semester although
some key statistical concepts emerge from joint distributions
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Bivariate normal: N(µ,Σ)

Graph from Wikipedia

Note that to simulate, we need to specify the correlation besides the
usual mean and sd for each normal
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Marginal distributions
Remember the concept of marginal distributions (absolutely
NOTHING to do with marginal effects, by the way)

In the case of two random variables (X,Y), the marginal distribution
of, say, X is the probability of X averaging over all the information on
Y. The other way of understand it, the marginal distribution of X
gives you the probability of each of the values X can take regardless
of the values of Y (it has to add up to 1).

From Wikipedia:
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Independence

Two random variables are independent if and only if:
fX ,Y (x , y) = fX (x)fY (y)

For discrete rv: P(X = x ,Y = y) = P(X = x)P(Y = y)

In terms of events: P(A ∩ B) = P(A)P(B)

This definition of independence is not that intuitive

It helps if you think that you don’t need the joint density to figure
out the probability that two events happen; you just need the
probability of each event or the marginal probabilities (fX (x) and
fY (y))

Independence means that knowing the outcome of one variable does
not affect the probability of the other

Easier to understand once we define conditional distributions
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Conditional distributions

What is the probability that a (discrete) random variable Y takes the
value of y given that X = x?

Think of “given” as meaning when, if, assuming that... X = x

When you think about events: What is the probability that event A
happens given than B already happened?: P(A|B) = P(A∩B)

P(B)

Continuous joint distributions: fY |X =
fX ,Y (x ,y)
fX (x)

Another way of thinking about conditional distribution: the
probability space is being restricted
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Independence, again

What is the conditional probability if two events are independent?

P(A|B) = P(A∩B)
P(B) = P(A)P(B)

P(B) = P(A)

So the probability of of A given than B occurs is just P(A)

In words, B happening does not affect P(A) (and vice versa)

The notion of given or conditional will come back many, many times
during the semester in many forms

Note: We’re talking about probabilities here, but a related concept is
conditional expectation. Example: What is the average salary for a
professor in the US? What is average salary conditional on rank?
What is the salary given than the professor is male?
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Conditional independence

Conditional independence is a key related concept. What about if the
relationship between A and B is affected by another factor, Z?

A and B are conditionally independent if
P(A ∩ B|Z ) = P(A|Z )P(B|Z )

More useful: If A and B are conditional independent given Z:
P(A|B,Z ) = P(A|Z )

In words, knowing B doesn’t tells us anything about P(A) once we
know Z
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Conditional independence...

Usual example: probability of two people commuting back home from
work (third factor: location)

Another example: Supposed you randomly assign patients to an
experimental treatment T based on severity of illness I . People with
more severe illness are given more chances of receiving the treatment.
Furthermore, age A is positively related to severity of illness

Therefore, T and A are NOT independent but T and A are
conditionally independent given I :

P(T |A, I ) = P(T |I )
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Expected value

The expected value of a random variable is the average of all the
values that X takes weighted by their respective probabilities

Discrete rv: E (X ) = x1f (x1) + · · ·+ xk f (xk) =
∑k

i=1 xi f (xi )

Continuous rv: E (X ) =
∫ +∞
−∞ xf (x)dx

Note that the mean is an expected value with equal weights:
∑n

i=1
xi
n

Properties

1 E (c) = c for any constant c
2 E (cX ) = cE (X )
3 E (aX + b) = aE (X ) + b for constants a, b
4 E (X + Y ) = E (X ) + E (Y )
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Conditional expectation

What is the expected value of a random variable Y given that we
know X = x has occurred?

Discrete case: E (Y |X = x) =
∑m

i=1 yi fY |X (yi |x)

Continuous case: E (Y |X ) =
∫ +∞
−∞ yfY |X (y |x)

It looks more complicated that what it is: What is the average
temperature in Denver over the year? What is the average
temperature during winter?

The law of iterated expectations: E (E (Y |X )) = E (Y )

Obvious but not intuitive: We first calculate the expected value
E [Y |X ]. Say, the average weather by season. It’s a function of the
four seasons. So it’s a function of X , where X is season

We then calculate E (E (Y |X )) and get E (Y ). Same is taking the
average weather for all four seasons...
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Another way of understanding the law of iterated
expectations

Suppose that E (wage|educ) = 4 + 0.6 ∗ educ
That is, we have a linear functional form for wage given levels of
education (educ)

The law of iterated expectations tell us that we can obtain E (wage)
by replacing educ with E (educ)

E (wage) = 4 + 0.6 ∗ E (educ)

In this class, we will learn how to estimate something like
E (wage|educ) = 4 + 0.6 ∗ educ from data
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Variance

The variance is a measure of how close observations are to their mean

Var(X ) = E [(X − µ)2] = E (X 2)− (E (x))2 = E (X 2)− µ2

Properties

1 The variance of a constant is zero
2 Var(aX ) = a2Var(X )
3 Var(aX + b) = a2Var(X )

The standard deviation is sd(X ) = +
√

Var(X )

The variance is a measure of deviation from the “mass” of the
distribution

The normal distribution is unique in that the variance is NOT a
function of the mean
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Populations and samples

Statistical inference is based on the idea that there is a population
(for technical reasons, infinitely large)

We want to make inferences about the population but we can’t
measure the infinitely large population; instead, we sample from it

Statistics is about making inferences (“conclusion reached on the
basis of evidence and reasoning”) about the population from
samples

Not always very clear... What is the population? Do we need
statistical inference?

1 How are people going to vote in the next US election?
2 What is the proportion of for-profit nursing homes that are certified by

CMS?
3 How many stars of type F are there in the universe?
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A note on notation

Textbooks distinguish population from sample statistics/parameters:
µ vs x̄ or σ2 vs s2

Not always consistent in notation

x̄ and s2 are estimators (from sample) of the true but unknown
parameters µ and σ2

This semester we’re going to distinguish βj from β̂j

For example, we will say that the population model is
y = β0 + β1x + ε and the estimated model from a sample is
ŷ = β̂0 + β̂1x
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Sampling

Let Y be a random variable representing a population with
probability density function (pdf) f (y ; θ1, θ2), which depends on
two parameters, θ1 and θ2

A random sample of size n from Y is denoted by Y1,Y2, ...,Yn

An actual sample is denoted by y1, y2, ..., yn

We say that a random sample from f (y ; θ1, θ2) Yi are independent,
identically distributed (i.i.d)

Important: Note that each yi is a draw from a random variable

We will focus on iid observations in this semester; cross-sectional
data. Longitudinal or clustered data are not iid

Understanding statistics is a lot easier with simulations
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Example 1: Normal
Let’s sample from a normal distribution with µ = 50 and σ2 = 81
set seed 1234567

set obs 2500

gen y = rnormal(50, 9)

sum y

. sum y

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

y | 2,500 50.05014 8.946829 17.52741 93.08252

list y in 1/10, noobs clean

41.41905 54.61874 65.79002 52.44608 52.50088 56.86109 45.38539

45.94027 28.07498 38.66535

sum y if _n <=10

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

y | 10 48.17018 10.63055 28.07498 65.79002

Note: If I gave you a list of numbers and told you that they came
from a normal distribution but ask you to guess µ and σ2 and you
give me the optimal/best answer, you would have discovered
maximum likelihood estimation (MLE)
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Example 1: Bernoulli

Sample from Bernoulli(θ), where θ = 0.6 (the probability of
“success”)
gen y_bernie=uniform()<=0.60

sum y_bernie

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

y_bernie | 2,500 .5932 .4913352 0 1

list y_bernie in 1/10, noobs clean

0 0 0 1 1 1 0 1 0 0

sum y_bernie if _n <=10

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

y_bernie | 10 .4 .5163978 0 1

Note that the mean is the proportion of 1’s. This is how we can
simulate a logistic model
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Properties of an estimator

We have a model of how things work: we have a population, a
sample, and we come up with an estimator of a population parameter
(e.g. mean, proportion, variance, etc)

The next question is: what is a good estimator? What are the
properties of a good estimator?

We just saw that if we take a sample from a population and calculate
the mean, x̄ , the sample mean is not going to be the same as µ but it
could be close. It’s a sample after all

We could take more samples and calculate the mean again of each
sample. At the very least, we would like, on average, x̄ to be the
same as µ

An estimator is unbiased if E (x̄) = µ; more generally, E (θ̂) = θ
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Example

We will create a population of N = 50, 000
clear

set obs 50000

gen y = rgamma(2,4)

* "true" mean and sd:

sum y

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

y | 50,000 8.009844 5.679751 .010425 54.47659

We will then get 100 random samples and calculate the mean for
each of the 100 samples
postfile buffer meanhat using sampmeans, replace

forvalues i=1/100 {

preserve

sample 30, count

qui sum y

post buffer (r(mean))

restore

}

postclose buffer
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Example...

Let’s take the mean of the 100 means
sum meanhat

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

meanhat | 100 7.939838 .9698508 5.713463 10.68582

It’s close to 8.009. Of course, this is not a proof but the analytic
proof is very simple

We’d need to show that the expected value of a Gamma rv is αβ,
where α and β are the scale and shape parameters of the Gamma
distribution

What is the the Std. Dev. .9698508 called?
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Example...

We got 100 simulated means. The mean of the 100 means is 7.93.
What about the 95% interval?
* Calculate percentiles of the 100 means

use sampmeans, clear

egen p2_5 = pctile(meanhat), p(2.5)

egen p97_5 = pctile(meanhat), p(97.5)

sum p*

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

p2_5 | 100 6.191483 0 6.191483 6.191483

p97_5 | 100 9.849985 0 9.849985 9.849985

If we repeated the experiment many times (100 here), then 95%
percent of the time the mean would be between 6.19 and 9.8

That’s a frequentist confidence interval
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Example...

In real life examples, we do not repeat sampling. We rely on
statistical theory to derive properties of estimators based on sample
values. But theory relies on this notion of repeating things
In real life, we would get one sample and use theory to tell us how to
calculate the 95% CI and standard error:
set obs 50000

gen y = rgamma(2,4)

* get one sample

preserve

sample 30, count

mean y

restore

--------------------------------------------------------------

| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------

y | 8.478952 1.001921 6.429792 10.52811

--------------------------------------------------------------

In your homework, you will learn (or, hopefully, remember) about the
central limit theorem...
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Example of a biased estimator

The sample variance s2 =
∑n

i=1
(xi−x̄)2

n is biased

E [s2] = E [
∑n

i=1
(xi−x̄)2

n ] = 1
nE [
∑n

i=1(xi − x̄)2]

Proof.

E [
n∑

i=1

(xi − x̄)2] = E [
n∑

i=1

x2
i − nx̄2]

= n(µ2 + σ2)− n(µ2 +
σ2

n
)

= (n − 1)σ2

So E [s2] = (n−1)σ2

n

Since we want E [s2] = σ2, we divide by (n − 1), not by n
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Efficiency

If we have two unbiased estimators, say, e1 and e2 of a parameter θ,
we prefer the estimator that has the smallest variance. We call it
the relatively efficient estimator

Another way: If var(e1) ≤ var(e2) then e1 is a relatively efficient
estimator

A classic example: x̄ = 1
n

∑n
i=1 xi is an efficient estimator of the

population mean µ compared to yn, the last observation of a sample

Both are unbiased estimators but the variance of x̄ is σ2

n while the
variance of yn is σ2

Easy to prove analytically
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Efficiency

We can also simulate. We will compare two estimators. The usual
mean and the mean of the first and the last observation (note the
syntax y[1] and y[30] in Stata). Both are unbiased estimators (why?)
set obs 50000

gen y = rnormal(50, 9)

postfile buffer meanhat1 meanhat2 using sampmeans2, replace

forvalues i=1/100 {

preserve

sample 30, count

qui sum y

scalar m1 = r(mean)

scalar m2 = (y[1] + y[30])/2

*di m1 m2

post buffer (m1) (m2)

restore

}

postclose buffer
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Efficiency
use sampmeans2, clear

sum meanhat1 meanhat2

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

meanhat1 | 100 50.20508 1.498602 46.9187 53.75912

meanhat2 | 100 49.38842 5.761486 33.89989 63.43159
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Efficiency

Both are unbiased; the expected value of the estimator is very close
to 50. But the standard error (SE) of the estimators are different

The SE of the usual estimator for the mean (
∑ xi

n ) is smaller than the

estimator y [1]+y [30]
2 , the mean of the first and last observations

Moral of the story, you prefer the estimator that has smaller variance.
Just keep in mind that both estimators should be unbiased. No
point in preferring a estimator with smaller variance if it’s biased

Reminder: Simulations a are not proofs, bu they help you get a sense
of what you should find in theory
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Consistency

This property of an estimator is more intuitive and an important
requirement of any estimator

A good estimator should get closer to the the true parameter the
larger the sample size

This is not true for the example of yn as an estimator of µ; the
variance is always σ2 regardless of the sample size

Bias and efficiency are properties given a sample size. Now we are
concerned about the behavior of an estimator when we make the
sample size larger and larger

That’s an asymptotic property
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Consistency

From Wooldridge: Let Wn be an estimator of θ based on a sample
Y1,Y2, ...,Yn of size n. Then, Wn is a consistent estimator of θ if for
every ε > 0, P(|Wn − θ| > ε)→ 0 as n→∞
In words, the probability that the estimator Wn is different than θ
gets smaller and smaller as the sample gets larger and larger
(remember, the population is infinitely large)

That ε in the definition means that the previous statement is true
regardless of how large of small one sets the difference between Wn

and θ to be

It’s not the the estimator is going to always be closer the larger the
sample size gets (there is randomness) but it is likely that it will
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Consistency

Note that now we need to use use the “i” variable for the loops
We are saving the mean and the sample size. The smaller sample size
is 5, the larger 2000. We still have our population of 50,000
observations from N(50, 9) (see do file)
postfile buffer meanhat1 samp using sampmeans3, replace

forvalues i= 5(10)2000 {

preserve

sample ‘i’, count

qui sum y

scalar m1 = r(mean)

scalar s = r(N)

post buffer (m1) (s)

restore

}

postclose buffer
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Consistency
Note how in some cases the error was larger with a larger sample size.
Remember, the limit is in probability
use sampmeans3, clear

gen dis = abs(meanhat1-50)

line dis samp, sort title("Error by sample size") ytitle("Absolute distance") ///

xtitle("Sample size") saving(consi.gph, replace)

45



Loose ends

Other probability distributions will show up when we do hypothesis
tests: t-student, Chi-square, and the F-distribution

Have this in mind:

Chi-square: The Chi-square is the square of a standard normal (so
only takes positive values, like the variance)

F distribution: The F distribution originates from a ratio of two
Chi-square distribution (like a ratio of variances)

t-student: The t-student looks like a normal distribution with fatter
tails and originates from a ratio of a normal to a Chi-square
distribution
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Summary

Remember calculus and basic statistics. Learn about conditional
densities, conditional expectation, rules of expected values, variances

We have a model of how to think about a population, a sample, and
an estimator

A good estimator has three basic properties

Make sure you understand and remember each property; it will help
you understand Methods II

Go over the simulations and make your own simulations
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