Week 14: Bootstrap

Marcelo Coca Perraillon

University of Colorado
Anschutz Medical Campus

Health Services Research Methods I
 HSMP 7607 2018

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.
Updated notes are here: https://clas.ucdenver.edu/marcelo-perraillon/ teaching/health-services-research-methods-i-hsmp-7607

Outline

■ Review of standard errors

- The magic of bootstrapping

■ Caveats

Standard error, reminder

■ Back in the days (week 4 of this class) we covered standard errors

- We have an estimator, say, the mean of a sample $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ or a proportion \hat{p}
- The parameter estimate has some error and a distribution (not the same as the standard deviation of the data)
- If we know the distribution of the parameter and its standard error, then we can build confidence intervals and do hypothesis testing
- In the context of linear regression, we know that $\hat{\beta}_{j}$ distributes normal and we have a formula for its standard error (the variance-covariance matrix, really). We know this because of theory

Derivation

■ We use statistical theory to derive standard errors

- In the linear model, we use the central limit theorem, the law of large numbers, and the assumption of iid errors that are normally distributed
- We needed all that to come up with formulas for the standard error
- The logic of standard errors is a lot easier to understand using simulations

Example

- Say that we have a population of 40,000 observations

■ We will take a sample of 150 observations out of the 40,000 (recall, that in theory, we assume that the population is infinitely large)

- We will take the mean of the 150 observations
- If we could repeat this experiment many times, we could calculate the mean many times and see how it distributes (that's why this way of thinking about statistics is called frequentist)
- Keep in mind: we want to understand how the mean distributes, not the distribution of the 150 observations or the 40,000
■ We will do this 1,000 times. In a real life example, we can't do this. We just get a sample of 150 observations. We can't repeat the experiments many times

Example

■ We will create a population of 40,000 people and simulate their "age" with $(N(5,1))^{2}$
■ I take the square to avoid negative ages; it will distribute Chi-square. Also, I'll remove the decimals

```
clear
set seed 1234567
set obs 40000
gen age = int((rnormal (5,1))^2)
sum age
    Variable | 
```


Example

- Next, we take a sample of 150 and calculate the mean
- We repeat 1,000 times so we have a distribution for the mean and calculate the standard deviation of the means (i.e. the standard error)
- It will take a while...

```
postfile buffer meanhat using sampmean, replace
    forvalues i=1/1000 {
    preserve
    sample 150, count
    qui sum age
    post buffer (r(mean))
    restore
}
postclose buffer
```

- I'm not bootstrapping here. This is about understanding the standard error

Example

■ We can see how the means distribute and what is the standard deviation (standard error)

```
use sampmean, clear
hist meanhat, saving(med.gph, replace)
sum meanhat
    Variable | 
graph export med.png, replace
```


So what did we learn?

- Even though the data does not distribute normal (it had a Chi-square distribution) the means of the 150 do distribute normal
- The standard error (the standard deviation of the means) is 0.84

■ With that information we could do hypothesis testing. For example, we know that 95% of the values are within 2 standard deviations

- If say, I use the first sample of 150 with mean 26.73 , the 95 Cl is [26.73-2*0.84, 26.73 $+2 * 0.84]=[25.05,28.41]$. We would reject the null that the mean is 29 , for example
- (Recall, though, that we use the t-distribution because we have to estimate the standard error)

So what did we learn?

- Of course, we don't do simulations in practice since we can't and know that the theoretical SE of the mean is $\frac{\hat{\sigma}}{\sqrt{N}}$, where $\hat{\sigma}$ is the standard deviation of the sample
■ For example, we can use just 1 sample to get an approximation:

Variable \|	Obs	Mean	Std. Dev.	Min	Max
age	150	26.73333	9.95673	4	54
di 9.957649 /sqrt(150)					
. 81303864					

- Theory gives us a formula for the standard error and a distribution. With simulations, we found that it was 0.84 . With theory, we got 0.81

What if we don't have theory?

■ What happens when we don't have theory to tell us what is the standard error?

- We collect a sample and have an estimator but we don't know its standard error either because we don't know how to derive the theoretical SE or because there is no formula for it
■ We can't use simulations because we do not know the true model; we just used simulations to understand the logic behind the theory
- This is when the bootstrap is truly like magic

Nonparametric bootstrap

- Suppose a new situation (that is slightly more realistic)
- We have a sample of 150 people and we calculate mean age but let's assume that we do not know the formula for the standard error of the mean
- How could we come up with an approximation for the standard error using the data?
- Enters the bootstrap
- I'll show you how the bootstrap works before we try to understand why it works

Nonparametric bootstrap

■ We won't simulate from any distribution. We will resample with replacement. We will resample our sample of 150 observations

- We will use the 150 observations and obtain a sample with replacement so we have another set of 150 observations
- We will take the mean of the 150 observations and save it
- We will repeat this process 3000 times and use the 3000 means to calculate their standard deviation and distribution

Sampling with replacement

- Sampling with replacement can be confusing

■ Suppose you have ten numbers: $2,4,6,10,3,11,20,40,13,1$

- If we sample 10 numbers with replacement, we could get: $2,4,4,4$, $11,1,20,6,6,2$
- In other words, just a combination of the same numbers, some of them repeated but most likely not the same numbers
- Sampling 10 numbers out of those 10 numbers without replacement would imply getting the same exact 10 numbers

Stop here for a bit

- Make sure you understand what is different here from the simulations
- We are not drawing a random sample from a distribution

■ We are using our sample to take other samples of the same size

- It can be hard to understand this distinction and even harder to understand why it works

Example bootstrap

- I saved one sample of 150 in a dataset called s150.dta
- We want to calculate the SE of the mean because we are pretending we don't know the formula for the standard error

use s150, clear					
sum age					
Variable \|	Obs	Mean	Std. Dev.	Min	Max
age \|	150	25.49595	10.70073	1	95

* Theoretical SE
. di 10.70073/sqrt(150)
.87371095

■ In this sample, the theoretical error is 0.87

Example bootstrap

- Resample from the 150 with replacement to get another sample of size 150
- Again, it's not going to be the same 150 observations, each will be different
- Take the mean and save it; repeat 3000 times

```
postfile buffer meanhat using sampmean_b, replace
forvalues i=1/3000 {
    preserve
    bsample 150
    qui sum age
    post buffer (r(mean))
restore
}
postclose buffer
use sampmean_b, clear
sum
    Variable | Obs Mean Std. Dev. Min Max
-------------+------------------------------------------------------------------
```

■ Our boostrapped SE is .8323291 , which is close to theoretical SE. MAGIC

Another example

■ You don't need to write your own program most of the time

- Stata has a bootstrap command

■ We will use the auto dataset

Auto dataset

- Auto dataset

sysuse auto, clear (1978 Automobile Data)							
reg price mpg turn							
Source I	SS	df	MS	Number of obs		$\begin{array}{ll}= & 74\end{array}$	
							10.08
Model	140436412	2	70218206.1	Prob	> F		0.0001
Residual \|	494628984	71	6966605.41		uared		0.2211
					R-squared		0.1992
Total \|	635065396	73	8699525.97	Roo		=	2639.4
price \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	.	Interval]
mpg	-259.6967	76.84886	-3.38	0.001	-412.929		-106.4645
turn \|	-38.03857	101.0624	-0.38	0.708	-239.5513		163.4742
_cons \|	13204.27	5316.186	2.48	0.015	2604.1		23804.45

■ We do have theory and we do have a formula for the SEs here...

Auto dataset

- Let's bootstrap them anyway

bootstrap, reps(1000): regress price mpg turn
(running regress on estimation sample)
Bootstrap replications (1000)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

Linear regression	Number of obs	=	74
	Replications		2,000
	Wald chi2(2)	=	14.53
	Prob > chi2		0.0007
	R-squared		0.2211
	Adj R-squared		0.1992
	Root MSE		9.4328

price	Observed Coef.	Bootstrap		$\mathrm{P}>\|\mathrm{z}\|$	Normal-based	
mpg	-259.6967	104.8474	-2.48	0.013	-465.1939	-54.19961
turn	-38.03857	129.3878	-0.29	0.769	-291.6339	215.5568
_cons	13204.27	7012.439	1.88	0.060	-539.8537	26948.4

■ MAGIC!!!

Not impressed?

- Perhaps you are not too impressed because the SEs are not that close in this example
- But check the data more carefully; the auto dataset has only 74 observations
- What about if we try the same with more data?
- But first, why more data would be better? The way I make sense of it is that with more data we have more realizations or examples of values so it is like we were drawing random samples repeatedly, just like what we did getting at the beginning of the class
- Let's use the beauty dataset

Beauty dataset

- Beauty dataset has more observations
reg lwage abvavg exper looks union

Source \|	SS	df	MS	Number of obs	1,260	
				$\mathrm{F}(4,1255)$	48.43	
Model \|	59.4988269	4	14.8747067	Prob > F	0.0000	
Residual \|	385.481145	1,255	. 307156291	1 R-squared	0.1337	
				Adj R-squared	0.1310	
Total I	444.979972	1,259	. 353439215	Root MSE	. 55422	
lwage \|	Coef.	Std. Err.	t	P>\|t	[95\% Conf	Interval]
abvavg \|	-. 1600523	. 0618286	-2.59	$0.010-.2813512$	-. 0387534	
exper \|	. 0152176	. 0013286	11.45	0.000 .012611	. 0178241	
looks \|	. 1874543	. 0413931	4.53	0.000 .106247	. 2686616	
union \|	. 1986142	. 0353455	5.62	0.000 .1292715	. 2679569	
_cons I	. 7791512	. 1212421	6.43	0.000 .5412917	1.017011	

Beauty dataset

- Bootstrap the SEs
bootstrap, reps(2000): reg lwage abvavg exper looks union (running regress on estimation sample)

Bootstrap replications (2000)
----+--- 1 ---+--- 2 ---+--- 3 ---+---- 4 ---+--- 5
.
. 2000

Linear regression	$=$	1,260	
	Number of obs	$=$	2,000
Replications		$=$	216.74
Wald chi2(4)	$=$	0.0000	
	Prob $>$ chi2	$=$	0.1337
	R-squared	$=$	0.1310
	Adj R-squared	$=$	0.5542

	Observed Coef.	Bootstrap Std. Err.	z		Normal-based [95\% Conf. Interval]	
abvavg	-. 1600523	. 0632131	-2.53	0.011	-. 2839476	-. 036157
exper	. 0152176	. 0013484	11.29	0.000	. 0125747	. 0178604
looks	. 1874543	. 0429811	4.36	0.000	. 1032128	. 2716958
union	. 1986142	. 0322598	6.16	0.000	. 1353861	. 2618423
_cons	. 7791512	. 1255793	6.20	0.000	. 5330203	1.025282

- As I said, MAGIC!

When do we use bootstrapped SEs?

■ We use them when we don't have theory to guide us

- The classic example: no theoretical SE for the median
- You will use them next semester when doing some versions of instrumental variables and propensity scores
- There are several variants of bootstrap (jackknife, parametric)

■ Why does it work? Well, because, apparently, resampling from a sample with replacement is like sampling from a population; it works better when the sample itself is not small

- In other words, resampling with replacement from the 150 observations is like sampling from the 40,000 observations (the population)
- Active area of research

Median

- As I said, there is no good theoretical formula for the standard error of the median
■ So bootstrapping is a good option. I'll do it the longer way, making my own program

```
seed seed 12354
sysuse auto, clear
* Write a command call mymedian
program mymedian, rclass
    version 14.2
    args x
    qui sum ' }x\mathrm{ ', det
    return scalar med =r(p50)
end
bootstrap r(med), reps(1000): mymedian price
```


Median

- Output

Median - the shortest way

- Using the summarize command directly

Pesky details

- But what about the distribution of the estimate? We know the SE but we need to know how it distributes as well
. estat bootstrap, all

Bootstrap results			Number of obs Replications		$=$	$\begin{array}{r} 74 \\ 1000 \end{array}$
$\begin{aligned} & \text { command: summarize price, detail } \\ & \text { _bs_1: } \mathrm{r}(\mathrm{p} 50) \end{aligned}$						
ObservedCoef. Bootstrap \quad BiasStd. Err. [95\% Conf. Interval]						
_bs_1	5006.5	7.681	257.05629	4502.679	5510.321	(N)
				4603.5	5708.5	(P)
				4647	5719	(BC)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

Summary

- Active area of research

■ Extremely useful in some situations, although for most applied research we don't need it because there is theory

- The idea is so simple yet so powerful

