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Outline

Review of standard errors

The magic of bootstrapping

Caveats
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Standard error, reminder

Back in the days (week 4 of this class) we covered standard errors

We have an estimator, say, the mean of a sample X̄ =
∑n

i=1 Xi/n or
a proportion p̂

The parameter estimate has some error and a distribution (not the
same as the standard deviation of the data)

If we know the distribution of the parameter and its standard error,
then we can build confidence intervals and do hypothesis testing

In the context of linear regression, we know that β̂j distributes normal
and we have a formula for its standard error (the
variance-covariance matrix, really). We know this because of theory
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Derivation

We use statistical theory to derive standard errors

In the linear model, we use the central limit theorem, the law of large
numbers, and the assumption of iid errors that are normally
distributed

We needed all that to come up with formulas for the standard error

The logic of standard errors is a lot easier to understand using
simulations
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Example

Say that we have a population of 40,000 observations

We will take a sample of 150 observations out of the 40,000 (recall,
that in theory, we assume that the population is infinitely large)

We will take the mean of the 150 observations

If we could repeat this experiment many times, we could calculate
the mean many times and see how it distributes (that’s why this way
of thinking about statistics is called frequentist)

Keep in mind: we want to understand how the mean distributes, not
the distribution of the 150 observations or the 40,000

We will do this 1,000 times. In a real life example, we can’t do this.
We just get a sample of 150 observations. We can’t repeat the
experiments many times
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Example
We will create a population of 40,000 people and simulate their “age”
with (N(5, 1))2

I take the square to avoid negative ages; it will distribute Chi-square.
Also, I’ll remove the decimals

clear

set seed 1234567

set obs 40000

gen age = int((rnormal(5,1))^2)

sum age

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

age | 40,000 25.49595 10.12632 1 95
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Example

Next, we take a sample of 150 and calculate the mean

We repeat 1,000 times so we have a distribution for the mean and
calculate the standard deviation of the means (i.e. the standard error)

It will take a while...

postfile buffer meanhat using sampmean, replace

forvalues i=1/1000 {

preserve

sample 150, count

qui sum age

post buffer (r(mean))

restore

}

postclose buffer

I’m not bootstrapping here. This is about understanding the
standard error
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Example

We can see how the means distribute and what is the standard
deviation (standard error)

use sampmean, clear

hist meanhat, saving(med.gph, replace)

sum meanhat

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

meanhat | 1,000 25.49305 .8420507 22.69333 28.30667

graph export med.png, replace
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So what did we learn?

Even though the data does not distribute normal (it had a Chi-square
distribution) the means of the 150 do distribute normal

The standard error (the standard deviation of the means) is 0.84

With that information we could do hypothesis testing. For example,
we know that 95% of the values are within 2 standard deviations

If say, I use the first sample of 150 with mean 26.73, the 95 CI is
[26.73 − 2 ∗ 0.84, 26.73 + 2 ∗ 0.84] = [25.05, 28.41]. We would reject
the null that the mean is 29, for example

(Recall, though, that we use the t-distribution because we have to
estimate the standard error)
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So what did we learn?

Of course, we don’t do simulations in practice since we can’t and
know that the theoretical SE of the mean is σ̂√

N
, where σ̂ is the

standard deviation of the sample
For example, we can use just 1 sample to get an approximation:
Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

age | 150 26.73333 9.95673 4 54

di 9.957649 /sqrt(150)

.81303864

Theory gives us a formula for the standard error and a distribution.
With simulations, we found that it was 0.84. With theory, we got 0.81
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What if we don’t have theory?

What happens when we don’t have theory to tell us what is the
standard error?

We collect a sample and have an estimator but we don’t know its
standard error either because we don’t know how to derive the
theoretical SE or because there is no formula for it

We can’t use simulations because we do not know the true model; we
just used simulations to understand the logic behind the theory

This is when the bootstrap is truly like magic

11



Nonparametric bootstrap

Suppose a new situation (that is slightly more realistic)

We have a sample of 150 people and we calculate mean age but let’s
assume that we do not know the formula for the standard error of
the mean

How could we come up with an approximation for the standard error
using the data?

Enters the bootstrap

I’ll show you how the bootstrap works before we try to understand
why it works
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Nonparametric bootstrap

We won’t simulate from any distribution. We will resample with
replacement. We will resample our sample of 150 observations

We will use the 150 observations and obtain a sample with
replacement so we have another set of 150 observations

We will take the mean of the 150 observations and save it

We will repeat this process 3000 times and use the 3000 means to
calculate their standard deviation and distribution
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Sampling with replacement

Sampling with replacement can be confusing

Suppose you have ten numbers: 2, 4, 6, 10, 3, 11, 20, 40, 13,1

If we sample 10 numbers with replacement, we could get: 2, 4, 4, 4,
11, 1, 20, 6, 6, 2

In other words, just a combination of the same numbers, some of
them repeated but most likely not the same numbers

Sampling 10 numbers out of those 10 numbers without replacement
would imply getting the same exact 10 numbers
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Stop here for a bit

Make sure you understand what is different here from the simulations

We are not drawing a random sample from a distribution

We are using our sample to take other samples of the same size

It can be hard to understand this distinction and even harder to
understand why it works
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Example bootstrap

I saved one sample of 150 in a dataset called s150.dta
We want to calculate the SE of the mean because we are pretending
we don’t know the formula for the standard error
use s150,clear

sum age

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

age | 150 25.49595 10.70073 1 95

* Theoretical SE

. di 10.70073/sqrt(150)

.87371095

In this sample, the theoretical error is 0.87
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Example bootstrap

Resample from the 150 with replacement to get another sample of
size 150

Again, it’s not going to be the same 150 observations, each will be
different
Take the mean and save it; repeat 3000 times
postfile buffer meanhat using sampmean_b, replace

forvalues i=1/3000 {

preserve

bsample 150

qui sum age

post buffer (r(mean))

restore

}

postclose buffer

use sampmean_b, clear

sum

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

meanhat | 3,000 25.4795 .8323291 22.52 28.56667

Our boostrapped SE is .8323291, which is close to theoretical SE.
MAGIC
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Another example

You don’t need to write your own program most of the time

Stata has a bootstrap command

We will use the auto dataset
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Auto dataset

Auto dataset
sysuse auto, clear

(1978 Automobile Data)

reg price mpg turn

Source | SS df MS Number of obs = 74

-------------+---------------------------------- F(2, 71) = 10.08

Model | 140436412 2 70218206.1 Prob > F = 0.0001

Residual | 494628984 71 6966605.41 R-squared = 0.2211

-------------+---------------------------------- Adj R-squared = 0.1992

Total | 635065396 73 8699525.97 Root MSE = 2639.4

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | -259.6967 76.84886 -3.38 0.001 -412.929 -106.4645

turn | -38.03857 101.0624 -0.38 0.708 -239.5513 163.4742

_cons | 13204.27 5316.186 2.48 0.015 2604.1 23804.45

------------------------------------------------------------------------------

We do have theory and we do have a formula for the SEs here...
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Auto dataset

Let’s bootstrap them anyway
bootstrap, reps(1000): regress price mpg turn

(running regress on estimation sample)

Bootstrap replications (1000)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

...

.................................................. 2000

Linear regression Number of obs = 74

Replications = 2,000

Wald chi2(2) = 14.53

Prob > chi2 = 0.0007

R-squared = 0.2211

Adj R-squared = 0.1992

Root MSE = 2639.4328

------------------------------------------------------------------------------

| Observed Bootstrap Normal-based

price | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | -259.6967 104.8474 -2.48 0.013 -465.1939 -54.19961

turn | -38.03857 129.3878 -0.29 0.769 -291.6339 215.5568

_cons | 13204.27 7012.439 1.88 0.060 -539.8537 26948.4

------------------------------------------------------------------------------

MAGIC!!!
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Not impressed?

Perhaps you are not too impressed because the SEs are not that close
in this example

But check the data more carefully; the auto dataset has only 74
observations

What about if we try the same with more data?

But first, why more data would be better? The way I make sense of it
is that with more data we have more realizations or examples of
values so it is like we were drawing random samples repeatedly, just
like what we did getting at the beginning of the class

Let’s use the beauty dataset
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Beauty dataset

Beauty dataset has more observations
reg lwage abvavg exper looks union

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(4, 1255) = 48.43

Model | 59.4988269 4 14.8747067 Prob > F = 0.0000

Residual | 385.481145 1,255 .307156291 R-squared = 0.1337

-------------+---------------------------------- Adj R-squared = 0.1310

Total | 444.979972 1,259 .353439215 Root MSE = .55422

------------------------------------------------------------------------------

lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | -.1600523 .0618286 -2.59 0.010 -.2813512 -.0387534

exper | .0152176 .0013286 11.45 0.000 .012611 .0178241

looks | .1874543 .0413931 4.53 0.000 .106247 .2686616

union | .1986142 .0353455 5.62 0.000 .1292715 .2679569

_cons | .7791512 .1212421 6.43 0.000 .5412917 1.017011

------------------------------------------------------------------------------
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Beauty dataset
Bootstrap the SEs

bootstrap, reps(2000): reg lwage abvavg exper looks union

(running regress on estimation sample)

Bootstrap replications (2000)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

...

.................................................. 2000

Linear regression Number of obs = 1,260

Replications = 2,000

Wald chi2(4) = 216.74

Prob > chi2 = 0.0000

R-squared = 0.1337

Adj R-squared = 0.1310

Root MSE = 0.5542

------------------------------------------------------------------------------

| Observed Bootstrap Normal-based

lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | -.1600523 .0632131 -2.53 0.011 -.2839476 -.036157

exper | .0152176 .0013484 11.29 0.000 .0125747 .0178604

looks | .1874543 .0429811 4.36 0.000 .1032128 .2716958

union | .1986142 .0322598 6.16 0.000 .1353861 .2618423

_cons | .7791512 .1255793 6.20 0.000 .5330203 1.025282

------------------------------------------------------------------------------

As I said, MAGIC!
23



When do we use bootstrapped SEs?

We use them when we don’t have theory to guide us

The classic example: no theoretical SE for the median

You will use them next semester when doing some versions of
instrumental variables and propensity scores

There are several variants of bootstrap (jackknife, parametric)

Why does it work? Well, because, apparently, resampling from a
sample with replacement is like sampling from a population; it works
better when the sample itself is not small

In other words, resampling with replacement from the 150
observations is like sampling from the 40,000 observations (the
population)

Active area of research
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Median

As I said, there is no good theoretical formula for the standard error
of the median

So bootstrapping is a good option. I’ll do it the longer way, making
my own program

seed seed 12354

sysuse auto, clear

* Write a command call mymedian

program mymedian, rclass

version 14.2

args x

qui sum ‘x’, det

return scalar med = r(p50)

end

bootstrap r(med), reps(1000): mymedian price
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Median

Output

Bootstrap replications (1000)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

...

.................................................. 1000

Bootstrap results Number of obs = 74

Replications = 1,000

command: mymedian price

_bs_1: r(med

------------------------------------------------------------------------------

| Observed Bootstrap Normal-based

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_bs_1 | 5006.5 270.0553 18.54 0.000 4477.201 5535.799

------------------------------------------------------------------------------
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Median - the shortest way

Using the summarize command directly

bootstrap r(p50), reps(1000): summarize price, detail

(running summarize on estimation sample)

Bootstrap replications (1000)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

......

.................................................. 1000

Bootstrap results Number of obs = 74

Replications = 1,000

command: summarize price, detail

_bs_1: r(p50)

------------------------------------------------------------------------------

| Observed Bootstrap Normal-based

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_bs_1 | 5006.5 257.0563 19.48 0.000 4502.679 5510.321

------------------------------------------------------------------------------
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Pesky details

But what about the distribution of the estimate? We know the SE
but we need to know how it distributes as well

. estat bootstrap, all

Bootstrap results Number of obs = 74

Replications = 1000

command: summarize price, detail

_bs_1: r(p50)

------------------------------------------------------------------------------

| Observed Bootstrap

| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------

_bs_1 | 5006.5 7.681 257.05629 4502.679 5510.321 (N)

| 4603.5 5708.5 (P)

| 4647 5719 (BC)

------------------------------------------------------------------------------

(N) normal confidence interval

(P) percentile confidence interval

(BC) bias-corrected confidence interval
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Summary

Active area of research

Extremely useful in some situations, although for most applied
research we don’t need it because there is theory

The idea is so simple yet so powerful
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