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Why do we need marginal effects?

In a simple linear model, say, y = β0 + β1age + β2male, we could
easily interpret the coefficients

It became more difficult when we had non-linear terms, for example:
y = β0 + β1age + β2age

2 + β3male

We saw that using the analytical derivative made interpretation a
lot easier :
∂E [y |age,male]

∂age = β1 + 2β2age

No single effect of age, the effect depends on age; that is, one effect
at age 20, another at 50, etc. Just plug in numbers for age in the
above expression to get the effect at different ages
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Why do we need marginal effects?

With interactions, it was even more complicated:
y = β0 + β1age + β2male + β3male ∗ age
But similar in the sense that the effect of age now depends on sex; or
the other way around, the effect of sex depends on age

With simple models, taking the derivative still helps with
interpretation

Centering also helps with parameter interpretation:
y = β0 + β1(age −m) + β2male + β3male ∗ (age −m)

If m is average age, then β2 is E [Y ] for males versus females of
average age. What is β1?
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Why do we need marginal effects?

In the logistic model, things got complicated very quickly:
log( p

1−p ) = β0 + β1age + β2male

We could present odds ratios: eβ1 and eβ2 and call it a day but we
know that odds ratios can be misleading (and EVIL?)

A simple example as a review (with no covariates): The probability of
death in a control group is 0.40. The probability of death in the
treatment group is 0.20

The odds ratio is:
0.2

1−0.2
0.4

1−0.4

= 0.375. The treatment reduces the odds of

death by a factor of 0.375. Or in reverse, the odds of death are 2.67
higher in the control group ( 1

0.375 )

But that’s not the relative risk, even though most people, including
journalists, would interpret the odds ratio as a relative risk. The
relative risk is 0.2

0.4 = 0.5. The probability of death is reduced by half
in the treatment group
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Why do we need marginal effects?
Note something else. With odds ratios and relative risks, we don’t
have a sense of the magnitude. Same example but now the
probability of death in the control group is 0.0004 and 0.0002 in the
treatment group

The odds ratio is still 0.375 and the relative risk is still 0.5

The magnitudes are of course quite different

A journalist could still say that, for example, eating broccoli sprouts
daily reduces the probability of dying of cancer by half. By half!!!

But if you learned that the reduction is (0.0004-0.0002) 0.0002 or
0.02 percent points, you probably are not going to run to Whole
Foods to get a $4 serving of broccoli sprouts every day

On the other hand, a difference of 20 percent point looks quite
impressive

As we will see, marginal effects is a way of presenting results as
differences in probabilities, which is more informative than odds
ratios and relative risks 6



Why do we need marginal effects?: Recap
Ideally, we want to understand what the model saying in the
probability scale and not in the odds scale, much less in the
estimation scale, the log-odds.

In the probability scale, all effects are non-linear because,
conditional on covariate values, the probability must be bounded
between 0 and 1

Here is when numerical methods come to the rescue. If we have
interactions in logistic models, we truly need numerical methods

We have called them marginal effects but they come in many other
names and there are different types

Big picture: it’s all about PREDICTION for INTERPRETATION.
We are using the estimated model to make predictions so we can
better interpret the model in the scale that makes more sense

We also saw that we could present adjusted results, which sometimes
can be confused with marginal effects so we are going to go over
“adjusting,” which you can also do with the margins command
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Big picture: not just for logistic models

We are using the logistic model to talk about marginal effects
because in logistic models we tend to care about effects in the
probability scale but coefficients are estimated in the log odds scale

But marginal effects are applicable to any other model

We will also use them to interpret linear models with more difficult
functional forms

We will use them with probit models to again use the probability scale

Marginal effects are used for Poisson models or any other GLM model
or, really, most parametric models
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Big picture: it’s about (numerical) derivatives

Again, we are going to estimate a model and we are going to use
predictions to help us interpret the model

Our goal will be to take numerical derivatives of functions for which
derivatives are complicated

As we saw, in the model yi = β0 + β1Xi + β2X
2
i + εi we can take the

derivative with respect to X : dE [yi |Xi ]
dXi

= β1 + 2β2Xi

In the logistic model, our estimation scale is the log-odds but we
would like to interpret our model in the probability scale

We saw that in the probability scale our model is
p = 1

1+e−(β0+β1X1+···+βpXp)
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Big picture: it’s about (numerical) derivatives

We know that for a function y = eX the derivative with respect to X
is dy

dX = eX so the above expression is not going to simplify to a
simpler expression

In fact, the effect of X1 depends on the value of X1 and the values of
all other covariates:
∂p
∂X1

= β1e
β0+β1X1+···+βpXp

(1+e−(β0+β1X1+···+βpXp))2

We would need to choose values for all the covariates in the model

Instead, we will approximate the analytical derivative numerically
using the definition of derivative and we will compute the average
effect of X1 on p
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Derivative, redux
In the review of statistics and math lecture we saw that the analytical
derivative is a limit:

limh→0
f (x+h)−f (x)

h

All the formulas for the derivative can be derived using the
definition and taking the limit. For example, an easy one for
f (x) = X 2

limh→0
(x+h)2−x2

h = x2+2xh+h2−x2

x = 2xh+h2

h = 2x + h = 2x

Numerically, that is, without finding the analytical formula, we could
use the definition plugging in a number for h that is small enough. In
that case:

limh→0
f (x+h)−f (x)

h ≈ f (x+h)−f (x)
h

Computationally, it’s not trivial to come up with a number h that is
small but “large enough” so that computations are numerically
accurate

For more on choosing h see Gould, Pitblado, and Poi (2010), Chapter
1 and Greene (2017) Appendix E
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Two-sided derivatives

The above approximation to the analytical derivative
f ′(x) ≈ f (x+h)−f (x)

h is not the only way to define the derivative

A two-sided derivative calculates a positive and negative small change
h:

f ′2(x) ≈ f (x+h)−f (x−h)
2h

The same issues about how to choose a small h remain

We will calculate marginal effects “by hand” and then we will use the
margins command

We will use both definitions of the derivative but Stata uses the
two-sided version

Our calculations will be very close but Stata uses an additional
iterative procedure that changes the value of h to achieve numerical
accuracy
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Terminology
As usual, language that originates in one discipline doesn’t translate
well to others. The term “marginal affects” is common in economics
and is the language of Stata

Gelman and Hill (2007) use the term “average predicted probability”
to refer to the same concept as marginal effects (in the logit model)

SAS and R have some procedures that can get marginal effects and
are also called marginal effects as well

One confusion is that when you tell your statistician friend about
marginal effects, your friend imagines an integral because of marginal
probability density functions (in a table of joint probabilities, the
probabilities “at the margin” are the marginal probabilities)

In economics, marginal means “additional” or “incremental,” which is
a derivative

Career advice: When you use marginal effects in a
presentation/paper, make sure that you explain what you mean when
you show marginal effects
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Somewhat of a digression: Is it a unit change?

In a model like y = β0 + β1x + ε we have have said that β1 is the
change in E [y ] for a one unit change in x

And that’s fine when the change is constant (linear)

In the model y = β0 + β1x + β2x
2 + ε, the marginal effect/change

is no longer for a 1 unit change even though most people would
interpret it that way when using marginal effects. Do it by hand:

Start with x = x0. Then change by one unit to x0 + 1 and compare
the two predictions for y . (For simplicity, dropping the “hat” from the
betas by the betas are the same)

y1 − y0 = β + β1(x0 + 1) + β2(x0 + 1)2 − β0 − β1x
0 − β2(x0)2

You will find: y1 − y0 = β1 + 2β2x
0 + β2, which is note the same as

dy/dx = β1 + 2β2x evaluated at x = x0. There is the extra β2 term
lingering there
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Somewhat of a digression: Is it a unit change?

Easy to understand why if you use the definition of the derivative:

limh→0
β0+β1(x+h)+β2(x+h)2−β0−β1x−β2x

h = β1 + 2β2x + β2h

So when h tends to zero both ways will be the same (increasing by
one or taking the derivative). The marginal effect applies to a
very small change in x, not to an one unit change in x

When are they going to be the same? The above formula provides
some intuition: β2 is the coefficient for x2, the curvature. The smaller
the β2 the smaller the curvature and closer to a straight line

So they are close when the curve looks more like a line

Bottom line: marginal effects for continuous variables apply to
a small change in x when effects are non-linear. They are not
changes by 1 unit, strictly speaking
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The margins command must be treated with respect and
caution

Stata’s margins command is worth the price of Stata. It’s truly
awesome

But it’s very easy to get an answer that is different from what you
wanted

A small change in syntax produces very different results. Always
read the output and be very, very careful

“adjust” and “mfx” used to be two separate commands. Now
margins does the same (plus more things) but the syntax became
more complex

Stata is so careful with version control and continuity that you can
still use those commands

Bottom line: be careful
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Data

We will use birth weight data from Wooldridge (bcuse bwght)

I created an indicator for low birth weight. Very low birth weight is
about 50 ounces (1,500 grams) but here I used 100 ounces

About 15% of children (mean of lw)

bwght birth weight, ounces

faminc 1988 family income, $1000s

motheduc mother’s yrs of educ

cigs cigs smked per day while preg

gen lw = 0

replace lw = 1 if bwght < 100 & bwght ~= .

sum lw faminc motheduc cigs

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

lw | 1,388 .1491354 .3563503 0 1

faminc | 1,388 29.02666 18.73928 .5 65

motheduc | 1,387 12.93583 2.376728 2 18

cigs | 1,388 2.087176 5.972688 0 50
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Model

We will model low birth weight as a function of cigarettes, mother’s
education, and family income

log( lwi
1−lwi

) = β0 + β1cigsi + β2faminci + β3motheduci

logit lw cigs faminc motheduc, nolog

Logistic regression Number of obs = 1,387

LR chi2(3) = 24.63

Prob > chi2 = 0.0000

Log likelihood = -572.15891 Pseudo R2 = 0.0211

------------------------------------------------------------------------------

lw | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0449006 .0104436 4.30 0.000 .0244316 .0653696

faminc | -.0080855 .004801 -1.68 0.092 -.0174953 .0013243

motheduc | .0031552 .037153 0.08 0.932 -.0696634 .0759738

_cons | -1.678173 .4497551 -3.73 0.000 -2.559676 -.7966687

------------------------------------------------------------------------------
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Model

We can show odds ratios: An additional cigarette increases the odds
of low birth weight by 4.6%

Of course, we now know that it does NOT mean that an additional
cigarette increases the relative probability of low birth weight by 4.6%
or that it’s even a difference in probability, which is what we want

logit, or

Logistic regression Number of obs = 1,387

LR chi2(3) = 24.63

Prob > chi2 = 0.0000

Log likelihood = -572.15891 Pseudo R2 = 0.0211

------------------------------------------------------------------------------

lw | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | 1.045924 .0109232 4.30 0.000 1.024733 1.067554

faminc | .9919471 .0047623 -1.68 0.092 .9826569 1.001325

motheduc | 1.00316 .0372704 0.08 0.932 .9327077 1.078934

_cons | .1867149 .083976 -3.73 0.000 .0773298 .4508283

------------------------------------------------------------------------------
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Model

We can also run our trusty linear model with the caveat that SEs are
likely not right (but probably close) and that since low birth
probability is (relatively) low we should be extra careful

Now, in the probability scale, an extra cigarette increases the
probability of low birth weight by 0.7 percent points. With 10
cigarettes, 7 percent points, assuming a linear effect

reg lw cigs faminc motheduc, robust

Linear regression Number of obs = 1,387

F(3, 1383) = 6.51

Prob > F = 0.0002

R-squared = 0.0212

Root MSE = .35304

------------------------------------------------------------------------------

| Robust

lw | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .007757 .0020677 3.75 0.000 .0037009 .0118131

faminc | -.0009345 .0005785 -1.62 0.106 -.0020693 .0002004

motheduc | .0005403 .0042972 0.13 0.900 -.0078895 .00897

_cons | .1531912 .0532648 2.88 0.004 .0487027 .2576797

------------------------------------------------------------------------------
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A plot is always helpful
A plot will help you understand the shape of the relationship of
interest but remember that other variables may change the shape

lowess lw cigs, gen(lw_c)

scatter lw cigs, jitter(3) msize(small) || ///

line lw_c cigs, color(blue) sort legend(off) saving(l.gph, replace)

graph export l.png, replace

21



Average Marginal Effect (AME)

We saw this last class: we compute the (numerical) marginal effect of
a variable Xj for each observation using the other covariates Xk as
they were observed. We change the value of a predictor by “a litlle
bit” and then we compute the average change across observations

In other words, the numerical derivative. Think of marginal effects as
getting an average derivative: ∂p

∂Xj

When using the margins command, make sure that 1) you use the
option dydx(varname) and 2) make sure you use factor syntax so
Stata knows that variables are continuous or dummy. Also, Stata will
figure out if there are interactions

If you coded interactions by hand (say: gen agemale = age*male),
you will get wrong results using margins without factor syntax
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Average Marginal Effect (AME)

Let’s calculate AME for the cigarette variable using the typical
formula for the analytical derivative

* Get the "small change"

qui sum cigs

scalar h = (abs(r(mean))+.0001)*.0001

di h

*.00020873

preserve

qui logit lw cigs faminc motheduc, nolog

* as is

predict double lw_0 if e(sample)

* Change cigs by a bit

replace cigs = cigs + scalar(h)

predict lw_1 if e(sample)

* For each obs

gen double dydx = (lw_1-lw_0)/scalar(h)

* Average

sum dydx

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 1,387 .0055768 .0012444 .0040507 .0113006

An additional cigarette increases the probability of low birth weight by
0.56 percent points
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Average Marginal Effect (AME)

Replicate using margins command

. margins, dydx(cigs)

Average marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0055782 .0012814 4.35 0.000 .0030666 .0080898

------------------------------------------------------------------------------

Very close but Stata uses the two-sided derivative

The formula h = (|x̄ |+ .0001)× .0001 is how Stata calculates the
initial small change. In this case, .00020873
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Average Marginal Effect (AME) the (almost) Stata way
* Two-sided derivative

preserve

qui logit lw cigs faminc motheduc

* Define small change for cigs

qui sum cigs

scalar h = (abs(r(mean))+0.0001)*0.0001

* Duplicte variable

clonevar cigs_c = cigs

* Small negative change

replace cigs = cigs_c - scalar(h)

predict double lw_0 if e(sample)

* Small positive change change

replace cigs = cigs_c + scalar(h)

predict double lw_1 if e(sample)

gen double dydx = (lw_1-lw_0)/(2*scalar(h))

sum dydx

restore

* .0055771

Close. Remember, Stata has an iterative procedure to ensure
numerical accuracy. This is one reason the margins command for
some complex models can be very slow. Stata also calculates the
variance using the delta method
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Average Marginal Effect (AME)

One advantage of doing it “by hand” rather than using margins is that
you can change the “small” change to any change or just calculated
the difference rather than ∆Y

∆X . What about 10 extra cigarettes?

preserve

qui logit lw cigs faminc motheduc

predict double lw_0 if e(sample)

replace cigs = cigs + 10

predict double lw_1 if e(sample)

gen double dydx = (lw_1-lw_0)/10

* Could be

* gen dy = (lw_1-lw_0)

sum dydx

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 1,387 .0064608 .0012196 .0048265 .0111532

In some cases we may not be interested in an approximation for a
small change. You have more flexibility doing it by hand. On the
other hand, we could just change the scale of cigs so changes are for
10 units
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AME for indicator variables

Understanding marginal effects it’s easier with dummy variables;
that’s why I have focused on continuous variables

With dummy variables we don’t have to do a “small” change. We
change from 0 to 1

preserve

qui logit lw smoked faminc motheduc

* Nobody smoked

replace smoked = 0

predict double lw_0 if e(sample)

* Everybody smokes

replace smoked = 1

predict double lw_1 if e(sample)

gen double dydx = (lw_1-lw_0)

sum dydx

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 1,387 .118284 .0105063 .0935378 .1363816
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AME for indicator variables
We can of course also use the margins command with caution (!)

qui logit lw smoked faminc motheduc, nolog

margins, dydx(smoked)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoked | .0988076 .0230959 4.28 0.000 .0535405 .1440748

------------------------------------------------------------------------------

qui logit lw i.smoked faminc motheduc, nolog

margins, dydx(smoked)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.smoked | .118284 .0322576 3.67 0.000 .0550602 .1815078

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Even though same margins statement, different results. The first one
is not what we wanted. We did not use the factor syntax in the first
model so Stata didn’t go from 0 to 1; instead it used a “small” change

Smoking increases the probability of low birth weight by almost 12%
points (yikes)
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AME for indicator variables

With indicator variables, we can also get what Stata calls predictive
margins (not marginal effects). Marginal effects are their difference

We can also use the results to go from margins to relative risk and to
odds ratios
qui logit lw i.smoked faminc motheduc, nolog

margins smoked

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoked |

0 | .1305183 .0099014 13.18 0.000 .1111118 .1499248

1 | .2488023 .0304311 8.18 0.000 .1891584 .3084461

------------------------------------------------------------------------------

* marginal effects from predictive margins

. di .2488023 - .1305183

.118284

. di .2488023 / .1305183

1.9062637

. di exp(_b[1.smoked])

2.2115807

* Same as

. di (.2488023/(1-.2488023))/((0.1305183)/(1-0.1305183))

2.206425

Odds ratio: 2.21, relative probability: 1.90. Difference: 0.118.
Remember, the rarer the event the closer they are
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AME for indicator variables

No predictive margins for continous variables
* no margins for continuous variables (marginal effects instead)

qui logit lw cigs faminc motheduc, nolog

margins cigs

factor ’cigs’ not found in list of covariates

r(322);

No margins for continuous variables because they take too
many values
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Marginal Effect at the Mean (MEM)
We have left the values of the covariates as they were observed
rather than holding them fixed at a certain value

We can also calculate marginal effects at the mean (of each
covariate), much like what we did when we adjusted predictions

There is some discussion about which way is better (see Williams,
2012)

For example, does it make sense to hold male at 0.6 male? In a sense,
yes. We are giving makes the value of the proportion in the sample,
0.6. In another sense, it seems odd

Don’t waste too much time thinking about this. When we
calculate marginal effects (not marings), it doesn’t really matter at
which value we hold the other covariates constant because we are
taking differences in effects. There could some differences in small
samples

In general, the difference will be so small that it is better to spend
mental resources somewhere else
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Marginal Effect at the Mean (MEM)

Keep covariates at mean values instead

preserve

qui sum cigs

scalar h = (abs(r(mean))+0.0001)*0.0001

qui logit lw cigs faminc motheduc, nolog

clonevar cigs_c = cigs

* At mean

replace faminc = 29.02666

replace motheduc = 12.93583

* Small negative change

replace cigs = cigs_c - scalar(h)

predict double lw_0 if e(sample)

* Small positive change change

replace cigs = cigs_c + scalar(h)

predict double lw_1 if e(sample)

gen double dydx = (lw_1-lw_0)/(2*scalar(h))

sum dydx

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 1,387 .0055624 .0010396 .0051876 .011267

MEM not that different from AME
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Marginal Effect at the Mean (MEM)

Using the margins command

margins, dydx(cigs) at((mean) faminc motheduc)

Average marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

at : faminc = 29.04218 (mean)

motheduc = 12.93583 (mean)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .005563 .0012843 4.33 0.000 .0030458 .0080801

------------------------------------------------------------------------------

Always read Stata’s output; remember, be afraid of the margins
command!
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Marginal Effect at the Mean (MEM)
Not the same as using the atmeans option

margins, dydx(cigs) atmeans

Conditional marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

at : cigs = 2.088681 (mean)

faminc = 29.04218 (mean)

motheduc = 12.93583 (mean)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0055506 .0012879 4.31 0.000 .0030264 .0080749

------------------------------------------------------------------------------

In this one, cigarettes were held at its mean, 2.088. Not a big deal in
this example because in this example the effect of cigs is relatively
linear (see lowess plot above) but you could have gotten a very
different answer

One more time: please be careful with the margins command
34



Marginal effects at representative values (MER)

We can hold values at observed values (AME) or at mean values
(MEM)

We could also choose representative values; values that are of interest

For example, what is the marginal effect of an additional cigarette on
the probability of low birth weight at different levels of income, say
10K, 20K, 30K and 40K?

Leave other covariates as observed
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Marginal effects at representative values (MER)

We will do it “by hand” for low income (10K) and higher income
(40K) using the one-sided version to make the code shorter

preserve

qui logit lw cigs faminc motheduc, nolog

* income 10k

replace faminc = 10

predict double lw_0_10 if e(sample)

replace cigs = cigs + .00597269

predict double lw_1_10 if e(sample)

gen double dydx10 = (lw_1_10-lw_0_10)/.00597269

* income 40k

replace faminc = 40

predict double lw_0_40 if e(sample)

replace cigs = cigs + .00597269

predict double lw_1_40 if e(sample)

gen double dydx40 = (lw_1_40-lw_0_40)/.00597269

sum dydx*

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx10 | 1,387 .0061672 .0010198 .005653 .0112164

dydx40 | 1,387 .0052304 .001039 .0047327 .0111981
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Marginal effects at representative values (MER)

Below, income reduces the effect of smoking. Better access to health
care? So income is a modifier of the effect?

qui logit lw cigs faminc motheduc, nolog

margins, dydx(cigs) at(faminc=(10 20 30 40)) vsquish

Average marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

1._at : faminc = 10

2._at : faminc = 20

3._at : faminc = 30

4._at : faminc = 40

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |

_at |

1 | .0061667 .0014205 4.34 0.000 .0033825 .0089508

2 | .0058463 .001337 4.37 0.000 .0032258 .0084668

3 | .0055334 .0012803 4.32 0.000 .0030239 .0080428

4 | .0052289 .0012501 4.18 0.000 .0027788 .0076789

------------------------------------------------------------------------------
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Marginal effects at representative values (MER)

But wait. Why different effects by income? We did not add
interactions between income and cigs and income in the model

Because in the probability scale the effect cigs depends on the values
of income and all other covariates!!!!

This won’t happen in the linear probability model

If we think that the effect of cigs depend on income, we should add
interactions to make this explicit
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Same but with LPM

Since there are no interactions, the marginal effect doesn’t depend on
the value of income

qui reg lw cigs faminc motheduc

margins, dydx(cigs) at(faminc=(10 20 30 40)) vsquish

Average marginal effects Number of obs = 1,387

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : cigs

1._at : faminc = 10

2._at : faminc = 20

3._at : faminc = 30

4._at : faminc = 40

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |

_at |

1 | .007757 .001631 4.76 0.000 .0045574 .0109566

2 | .007757 .001631 4.76 0.000 .0045574 .0109566

3 | .007757 .001631 4.76 0.000 .0045574 .0109566

4 | .007757 .001631 4.76 0.000 .0045574 .0109566

------------------------------------------------------------------------------
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With interactions the effect should be more noticiable
Now adding interactions between cigarettes and income. This is the
right way of making the effect of cigs depend on income

Note how the conclusion is different. However, the interaction is not
statistically significant

qui logit lw c.cigs##c.faminc motheduc, nolog

margins, dydx(cigs) at(faminc=(10 20 30 40)) vsquish

Average marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

1._at : faminc = 10

2._at : faminc = 20

3._at : faminc = 30

4._at : faminc = 40

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |

_at |

1 | .0054953 .0016702 3.29 0.001 .0022217 .0087689

2 | .0059858 .0013512 4.43 0.000 .0033374 .0086342

3 | .0064006 .0016609 3.85 0.000 .0031453 .0096558

4 | .0067452 .0022472 3.00 0.003 .0023408 .0111497

------------------------------------------------------------------------------
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Marginsplot
You can visualize changes using marginsplot. This is a way to get
adjusted plots using the margins command

marginsplot, saving(mp.gph, replace)

graph export mp.png, replace

41



Interactions

We have estimated the model
log( lwi

1−lwi
) = β0 + β1cigsi + β2faminci + β3motheduci

We didn’t use interactions between cigarettes and income so we have
assumed the same effect regardless of income in the log-odds scale

In other words, same slope and and same intercept

If we add interactions, the margins command is a life saver because
effects are hard to interpret otherwise

In particular, the magnitude of effects is hard to make sense when a
logistic model has interactions and we use odds ratios for
interpretations
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Interactions

As usual, interactions are easier to understand with two indicator
variables. Let’s say more than high school (hsp) and male as in
previous examples: log( p

1−p ) = β0 + β1hsp + β2male + β3hsp ∗male

In the log-odds scale, we interpret them exactly in the same way as in
the linear model and we can use derivatives and the other tricks we
learned (What’s β1? β2?)

For males: log( pm
1−pm ) = β0 + β1hsp + β2 + β3hsp

For females: log( pf
1−pf ) = β0 + β1hsp

Difference males - females: log( pm
1−pm )− log( pf

1−pf ) = β2 + β3hsp

So the effect depends on the level of education

Note that we can write it in terms of odds:
Pm

1−Pm
Pf

1−Pf

= eβ2+β3hsp

43



Interactions

Difference males - females: log( pm
1−pm )− log( pf

1−pf ) = β2 + β3hsp

Difference male - female for educated:
log( pme

1−pme
)− log( pfe

1−pfe ) = β2 + β3

Difference male - female for uneducated:
log( pmu

1−pmu
)− log( pfu

1−pfu ) = β2

Difference in difference:
log( pme

1−pme
)− log( pfe

1−pfe )− [log( pmu

1−pmu
)− log( pfu

1−pfu )] = β3

So same as with linear model. In the log-odds scale, it is a
difference-in-difference
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Interactions in the odds scale

log( pme

1−pme
)− log( pfe

1−pfe )− [log( pmu

1−pmu
)− log( pfu

1−pfu )] = β3

We can apply the rules of logs and take e() on both sides:
Pme

1−Pme
Pfe

1−Pfe

/
Pmu

1−Pmu
Pfu

1−Pfu

= eβ3

In the odds scale, an interaction is not a difference-in-difference but
rather a ratio of odds ratios

The interpretation is... well, good luck with that...

The interpretation is not that hard, actually. If greater than one, the
odds of outcome for educated are higher than for the uneducated (see
the numerator–it’s the odds ratio for males females for those
“educated” or hsp=1. The denominator is same but for those with
hsp=0)

Interpreting the magnitude in the probability scale is a lost
cause. A lot easier with margins or stratifying the models
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Interactions and stratification
Remember, a fully interacted model is the same as a stratified model;
it helps to think about it when verifying that interactions in the odds
scale is a ratio of odds ratios. Back low birth babies
Make sure you understand this (below, you can replicate the
0.947913–the interaction–running two stratified models and using
odds ratios)

gen inc = 0 if faminc ~=.

replace inc = 1 if faminc > 40 & faminc ~=.

logit lw c.cigs##i.inc, nolog or

------------------------------------------------------------------------------

lw | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | 1.050702 .0109996 4.72 0.000 1.029363 1.072483

1.inc | .9045562 .1740226 -0.52 0.602 .6204083 1.318844

|

inc#c.cigs |

1 | .947913 .0553484 -0.92 0.360 .8454093 1.062845

|

_cons | .1583417 .0151181 -19.30 0.000 .1313182 .1909263

------------------------------------------------------------------------------

qui logit lw cigs if inc == 0, nolog

. di exp(_b[cigs])

1.0507018

qui logit lw cigs if inc == 1, nolog

. di exp(_b[cigs])

.99597388

. di .99597388/1.0507018

.94791299
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Interactions and marginal effects

What about if we use marginal effects instead? The model is:

The model is logit(lw) = β0 + β1cigs + β2inc + β3cigs ∗ inc
inc is a dummy and equal 1 if income is higher than 40k

margins, dydx(*)

Average marginal effects Number of obs = 1,388

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs 1.inc

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0046941 .0018482 2.54 0.011 .0010717 .0083165

1.inc | -.0288422 .0225222 -1.28 0.200 -.0729849 .0153006

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Wait, two effects? The model has three coefficients. Where is the
interaction?
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Interactions and marginal effects

This may seem confusing but it’s not when you remember how Stata
calculates marginal effects

For cigs, a continuous variable, it’s using the two-sided derivative
increasing cigs by a little bit and calculating predictions. It’s
increasing cigs in both the main effect and the interaction

Then it takes an average so the marginal effect of cigs is the
numerical derivative for both inc=1 and inc=0 combined

For the marginal effect of inc, it’s doing the same going from 0 to 1,
averaging over the values of cigs

To get what we need, which in this case is the marginal effect of cigs
separately for inc=1 and inc=0, we have to be more specific
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Interactions and marginal effects

With interactions the effect of cigs depends on income

margins, dydx(cigs) at(inc=(0 1)) vsquish

Average marginal effects Number of obs = 1,388

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

1._at : inc = 0

2._at : inc = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |

_at |

1 | .0062867 .0012881 4.88 0.000 .0037621 .0088113

2 | -.0004394 .0062301 -0.07 0.944 -.0126501 .0117713

------------------------------------------------------------------------------

You need to remember this. Be careful using the margins
command when you have interactions
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Interactions and marginal effects
Of course, interactions go both ways. So the effect of income
depends on the number of cigs. But cigs is continuous; we have to
choose some values

margins, dydx(inc) at(cigs=(0 10 20 40)) vsquish

Conditional marginal effects Number of obs = 1,388

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : 1.inc

1._at : cigs = 0

2._at : cigs = 10

3._at : cigs = 20

4._at : cigs = 40

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

0.inc | (base outcome)

-------------+----------------------------------------------------------------

1.inc |

_at |

1 | -.0114123 .0214935 -0.53 0.595 -.0535388 .0307143

2 | -.0851994 .0622866 -1.37 0.171 -.2072788 .03688

3 | -.1819228 .1224851 -1.49 0.137 -.4219893 .0581436

4 | -.4251388 .2397838 -1.77 0.076 -.8951064 .0448287

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Again, interaction was not significant so let’s not dwell on
interpretation of effects

50



Digression

We can of course estimate marginal effects for linear models without
nonlinear terms but they will be boring

sysuse auto, clear

reg price mpg turn

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | -259.6967 76.84886 -3.38 0.001 -412.929 -106.4645

turn | -38.03857 101.0624 -0.38 0.708 -239.5513 163.4742

_cons | 13204.27 5316.186 2.48 0.015 2604.1 23804.45

------------------------------------------------------------------------------

margins, dydx(*)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | -259.6967 76.84886 -3.38 0.001 -412.929 -106.4645

turn | -38.03857 101.0624 -0.38 0.708 -239.5513 163.4742

------------------------------------------------------------------------------
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Margins are predictions

The essence of margins and marginal effects is that they are
predictions

We are using our estimated model to make predictions when we
change a continuous variable by a small amount or when we change
an indicator variable from 0 to 1

They are extremely useful because they allow us to interpret our
models

They are truly indispensable when the scale of estimation is not the
same as the scale of interest (logit, Poisson, etc) or when we have
non-linear terms
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“Adjusting”

We saw that adjusting is a good way of graphically presenting results

We make predictions “holding” other covariates at a constant value

The value at which we hold the covariates constant matters (but we
will see shortly cases in which it doesn’t matter that much)

Thankfully, adjusting is the common term in many areas so no
confusion, but...

Confusion: In epi, when incidence or prevalence rates are adjusted,
they are adjusted at some particular distribution (similar idea;
different way to do it)
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Example

Say, we have trends in hip fractures that are increasing. It could be
that hip fractures are going up just because the population is getting
older

So we want to “adjust” for the aging population and present adjusted
trends; in many cases, we don’t have individual level data so we can’t
run a regression model

So calculate hip fractures by age group and year. Then hold age
distribution at one particular year and weight the rates using those
weights
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Excel example

Go over the Excel example (adjust.xlsx)

I held the distribution to be the same as Year 1’s distribution
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Adjusting with models

We can also adjust with models rather than keeping the distribution
constant

For example: what is the probability of low birth weight as a function
of cigarettes holding the other covariates constant?

You have done this before using predictions but not when you have
other covariates

We can hold the values constant at different values and compare
adjusted trends or just keep them constant at their mean

No hard rules; most often adjusted at means
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What happens when you don’t hold them constant
You’ll get something that looks odd. In the plot below the values of
faminc and motheduc shift the prediction
We need to hold them constant so we can make adjusted predictions

qui logit lw cigs faminc motheduc

predict lwhat if e(sample)

line lwhat cigs, sort color(red)

graph export lwhat.png, replace
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Model adjusted “by hand”

For example, keep income and education at their mean values

Then plot the adjusted trend (you would describe this as “adjusted
for income and education”)

preserve

qui logit lw cigs faminc motheduc

replace faminc = 30

replace motheduc = 13

predict double plw_adj if e(sample)

*sum plw_adj

line plw_adj cigs, sort color(red) saving(adj.gph, replace)

graph export adj.png, replace

restore
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Adjusted probability of lw and number of cigarettes

Adjusted probability (we entered cigs as linear in the log-odds model,
but–again–it’s non-linear in the probability scale)
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Compare unadjusted and adjusted predictions using the
margins command
* Unadjusted

qui logit lw cigs

predict plw_unadj if e(sample)

line plw_unadj cigs, sort color(red) saving(l1.gph, replace) title("Unadjusted Predictions")

* Adjusted

qui logit lw cigs faminc motheduc

qui margins, at(cigs=(0(1)50) faminc=50 motheduc=13)

marginsplot, noci saving(l2.gph, replace)

graph combine l1.gph l2.gph, ycommon
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A very brief summary of margins and the margins
command

Most common uses: estimate “effects” in the scale of interest.
That is a 1) a numerical derivative for continuous covariates or 2)
incremental effects for dummy variables. Syntax is “margins,
dydx(varname)”

Another possibility is to use margins to obtain “predictive margins”
of dummy variables–and if you fix a continuous covariate at some
values, for continuous variable as well. Syntax is “margins varname”
or “margins varname, at(...)”

With the previous syntax you can use margins to obtain predictions,
Just specify values for all covariates: “margins, at(var1=10 var2=20
var3=...)”

You can also use margins to obtain “adjusted predictions,” which is
essesntially the same ideas as previous point. You need to fix
covariates at some values: margins, at(cigs=(0(1)50) faminc=50
motheduc=13)
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A very brief summary of margins and the margins
command

Confusion alert: Make sure you understand the difference between
marginal effects and predictive margins. I guarantee you are going to
get confused

Marginal effects (dydx) is about effects; the other is about calculating
predictions but not effects. Yet, part of the confusion is that in order
to calculate effects you also use predictions BUT changing values by a
“small” amount or from 0 to 1

We haven’t discussed other features but you can use the margins
command to express effects as elasticities, for example

The marginsplot has many options. It’s specially helpful to display
interactions and understand the model

You can produce adjusted plots as in the example in Excel using a
reference population...
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Predictions in logistic models
We saw that we can easily make predictions in the probability scale

logit lw smoked faminc, nolog

Logistic regression Number of obs = 1,388

LR chi2(2) = 24.30

Prob > chi2 = 0.0000

Log likelihood = -572.48309 Pseudo R2 = 0.0208

------------------------------------------------------------------------------

lw | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoked | .7898437 .1830874 4.31 0.000 .4309989 1.148688

faminc | -.0076573 .0043414 -1.76 0.078 -.0161662 .0008516

_cons | -1.681833 .151239 -11.12 0.000 -1.978256 -1.38541

------------------------------------------------------------------------------

di exp(_b[_cons] + _b[smoked] + _b[faminc]*30) / (1+exp(_b[_cons] + _b[smoked] + _b[faminc]*30))

.24569462

A mother who smoked during pregnancy with 30K in family income
has 25% probability of having a child weighting less than 100 ounces
at birth

Pseudo R2 is low but LRT test tell us that the two explanatory
variables are better than a model with no explanatory variables (never
a surprise)
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Predictions in logistic models

One way to evaluate the predictive ability of our models is to compare
predictors and observed values

We did so with linear models. We can use the root mean square error
(RMSE) or the R2 because it is also the square of the correlation
between observed and predicted values

In logistic models, the observed value is a 1/0 variable but predicted
values are either in the log odds scale or in the probability scale

We can transform probabilities into 1/0 values. If the predicted
probabilities is ≥ 0.5, then that means that the observation is more
likely than not to experience the event
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Correctly predicted

One way to evaluate the predictive ability of our models is to compare
predictors and observed values

We did so with linear models. We can use the root mean square error
(RMSE) or the R2 because it is also the square of the correlation
between observed and predicted values

In logistic models, the observed value is a 1/0 variable but predicted
values are either in the log odds scale or in the probability scale

We can transform probabilities into 1/0 values. If the predicted
probabilities is ≥ 0.5, then that means that the observation is more
likely than not to experience the event
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Correctly predicted

Calculating the observations correctly predicted

qui logit lw smoked faminc, nolog

predict phat if e(sample)

gen hatlw = 0 if phat ~= .

replace hatlw = 1 if phat >= 0.5 & phat ~= .

tab lw hatlw, row col

tab lw hatlw

| hatlw

lw | 0 | Total

-----------+-----------+----------

0 | 1,180 | 1,180

1 | 207 | 207

-----------+-----------+----------

Total | 1,387 | 1,387

But... low birth weight is not that common so using 0.5 as the cut off
point doesn’t make much sense
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Remembering epi

From Wiki:

Sensitivity: True positive; proportion of positives that are correctly
identified as such (i.e. the percentage of sick people who are correctly
identified as having the condition).

Specificity: True negative; proportion of negatives that are correctly
identified as such (i.e., the percentage of healthy people who are
correctly identified as not having the condition).

False positive: 1-specificity

Sensitivity and specificity are both correct predictions, either positive
(1) or negative (0)

We can just focus on whether we get the 1s right. We will use
true positives (sensitivity) and false positives (1-specificity)
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Calculating sensitivity and specificity

We need to come up with a cut-off point; we saw that if the cut-off
point is 0.5 our rate of false positives (1-specificity) is 1 because we
don’t classify anybody as 1

If we lower the cut-off too much, everybody will be a one: our model
is too sensitive but not specific

Of course, there is a command for that and graph: the
post-estimation command lsens
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Sensitivity and specificity

It’s a trade off. If we lower the cut-off, we call too many observations
a 1 so we make more false positive mistakes (1-specificity)

qui logit lw smoked faminc motheduc, nolog

lsens, saving(sens.gph, replace)

graph export sens.png, replace
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How can we evaluate predictions?

Remember, the outcome is a 1/0 variable. If we just try to guess
randomly, we have 50/50 change to get it right

So our model should be at least better than chance

One way to calculate and graph this is by using the Receiver
Operating Characteristic (ROC) (has its origins in signal detection
theory

Essentially, it plots sensitivity and 1-specificity (true positives, false
positives) using different cut-off points to determine if the observation
is a 1 (going from cut-off point 0 to 1)

The area under the curve is a measure of how good is the model at
discriminating 1s

It also called c-statistic or concordance statistic (higher is better)
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ROC
There is, of course, a command for that: lroc

qui logit lw smoked faminc, nolog

lroc, saving(lrocm1.gph, replace)

qui logit lw smoked faminc motheduc parity, nolog

lroc, saving(lrocm2.gph, replace)

graph combine lrocm1.gph lrocm2.gph, xsize(15) ysize(10)

graph export lrocm2.png, replace
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A random model (bad)

This is how a model with no predictive power looks like

gen x1 = rnormal(0,10)

qui logit lw x1

lroc, saving(noise.gph, replace)

graph export noise.png, replace
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What happened?

In our linear model, adding more variables was always better (R2

won’t go down)

When you are in the world of models in which the mean also
determines the variance, adding more variables is not always better

We just made the model worse: area under the curve went from 0.6
to 0.59. Not terrible, but adding more variables was not better

Parsimony in these models is a good thing and we must be careful
about adding unnecessary variables
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Summary

Main difficulty with logistic models is to interpret parameters

Marginal effects come to the rescue

Different terms for these types of effects. AMEs are usually called
average predicted comparisons

What we did today was about PREDICTION, 100 percent. We use
predictions to understand what our models are saying

The existence of the margins command has unified some of the
terminology

But if you talk to your friendly statistician, you need to explain
what you mean by marginal effects. They start thinking about
integrals in their heads when we mean derivatives...
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