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Outline

A bit of a patchwork class of topics I left behind

The classic bias-variance trade off

Overfitting models / saturated models / parsimony

Stata global variables

Notation, adding time and correlated errors (panel or longitudinal
data)

Presenting results: adjusting
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Bias-variance trade off

The bias-variance trade-off is a classic problem in statistics

Many different versions appear in different contexts. The first
introduction is usually in the context of the mean square error

The mean square error is the average distance of the square of
observed and predicted values:

MSE =
∑n

i=1(Ŷ − Yi )
2/n

The MSE is a measure of performance in terms of prediction

Confusion alert: We also use mean square error to estimate the
explained variance in linear regression (they are related; more in a bit)
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Mean square error

Example of mean square error (MSE) and root mean square error
(RMSE)

Back to college grades example

reg colgpa hsgpa male campus ACT mothcoll

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(5, 135) = 6.07

Model | 3.56184692 5 .712369384 Prob > F = 0.0000

Residual | 15.8442525 135 .117364834 R-squared = 0.1835

-------------+---------------------------------- Adj R-squared = 0.1533

Total | 19.4060994 140 .138614996 Root MSE = .34259

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4575161 .1010688 4.53 0.000 .257633 .6573991

male | .0054175 .0624735 0.09 0.931 -.1181358 .1289708

campus | -.0704102 .0776221 -0.91 0.366 -.2239228 .0831023

ACT | .0087551 .0113207 0.77 0.441 -.0136337 .0311439

mothcoll | .0331737 .0584164 0.57 0.571 -.082356 .1487035

_cons | 1.279981 .3487628 3.67 0.000 .5902354 1.969726

------------------------------------------------------------------------------
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Mean square error

Calculating mean square error (MSE) and root mean square error
(RMSE)

* Predict

predict gpahat

* Square error

gen mse = (gpahat - colgpa)^2

* Mean square error

sum mse

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

mse | 141 .1123706 .1356477 5.18e-06 .7398951

* Root mean square error

di sqrt(r(mean))

.33521722
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Mean square error

The smaller MSE or RMSE the better in terms of prediction

Sensitive to large errors; there are other alternatives (mean absolute
error, for example)

More generally, the MSE of a parameter θ with an estimator θ̂ is

MSE (θ̂) = E [(θ̂ − θ)2]

After applying the rules of expectations and some algebra, MSE can
be decomposed into:

MSE (θ̂) = var(θ̂) + Bias(θ̂)2

Recall that bias is E [θ̂ − θ]. If an estimator is unbiased, then bias = 0
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Bias-variance trade off

If the estimator is unbiased, then MSE is just the variance (hence the
connection with OLS)

Any estimator is a combination of both, bias and variance

We know that our linear model estimated via OLS or MLE is BLUE;
not only it’s asymptotically unbiased but it also has smaller variance

The intuition behind bias and variance of an estimator is often shown
with a graph
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Bias and variance in a graph

From
http://scott.fortmann-roe.com/docs/BiasVariance.html
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Bias-variance trade off

In many cases we need to choose between reducing bias at the cost of
increasing variance or decreasing variance at the cost of increasing
bias

Choosing estimators involve this trade-off; sometimes the trade-off is
clear

In causal inference with confounding (endogeneity if you are an
economist), for example, we prefer an instrumental variable approach
because we obtain a less biased estimator of local treatment effects at
the cost of a less efficient estimator (higher variance)

In propensity scores, we compare “similar” units to reduce bias but
increase the variance because we may restrict the sample to fewer
units

9



Bias-variance trade off

If we run a regression explaining wage as a function of age, sex,
education, etc we could use it to predict or explain the average wage
of those with higher education

But we could also just use the data for those with higher education

Using their data will reduce the bias because we are not including
information on people with other levels of education

On the other hand, we use less data so we increase the variance

In regression discontinuity, using observations as close as possible to
the cut-off point reduces bias but it also increases the variance
because we restrict the sample to fewer observations

10



Over- and under-fitting models

The other situation in which the concept emerges in when building
models

Remember that the R2 will never go down if we add a variable in the
model

We will decrease the bias as measured by the prediction ability of the
model, but we will also risk over-fitting the data

If we pay too much attention to goodness of fit (R2) we may run into
problems very quickly

Problem 1: collinearity. Problem 2: Model will predict well in one
dataset but badly in another
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Adding a lot of variables to a model

Global macros in Stata are handy

Useful for organizing sets covariates into logical groups
(demographics, comordibity, SES, etc)

Keeps code more readable

* Set 1

global covars1 hsgpa male campus ACT mothcoll

* Set 2

global covars2 voluntr PC greek car bgfriend

* Set 3

global covars3 clubs skipped alcohol gradMI
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Adding a lot of variables to a model

Use the dollar sign to call the global macro

reg colgpa $covars1

scalar m1r2 = e(r2)

est sto m1

reg colgpa $covars1 $covars2

scalar m2r2 = e(r2)

est sto m2

reg colgpa $covars1 $covars2 $covars3

scalar m3r2 = e(r2)

est sto m3

di m1r2 " " m2r2 " " m3r2

.18354265 .24846885 .34430613
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Adding a lot of variables to a model

Compare models (note the keep option to avoid displaying some of
the coefficients)

. est table m1 m2 m3, se p stat(N r2 r2_a) keep($covars1)

-----------------------------------------------------

Variable | m1 m2 m3

-------------+---------------------------------------

hsgpa | .45751607 .46457425 .40659732

| .10106884 .10244436 .09877931

| 0.0000 0.0000 0.0001

male | .0054175 .03310817 .04603947

| .06247347 .06398082 .06484514

| 0.9310 0.6057 0.4790

campus | -.07041023 -.08905737 -.08976193

| .07762206 .07857388 .0781437

| 0.3660 0.2591 0.2529

ACT | .00875514 .00560391 .01051044

| .01132067 .0111698 .01072888

| 0.4407 0.6167 0.3291

mothcoll | .03317374 -.00254655 -.04668698

| .05841643 .05913929 .05854816

| 0.5711 0.9657 0.4267

-------------+---------------------------------------

N | 141 141 141

r2 | .18354265 .24846885 .34430613

r2_a | .15330349 .19065877 .27145126

-----------------------------------------------------

legend: b/se/p
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Adding a lot of variables to model

Nothing is obviously wrong, the model with more variables fits better
using R2 or R2

a (as expected)

Nothing is wrong with the usual collinearity stats (VIF) either (check
by yourself)

But do we really need to control for so many factors? Can we really
expect that “holding other factors constant” will be true?

Hard to give a clear answer; at least in this example, not a lot of
theory to guide you (only intuition)

If you are building a predictive model, however, overfitting is always
a potential problem. The model might predict well in your dataset
but not in another (that’s why we often use a validation and
estimation sample)

Wooldridge writes that overffiting often “results from nervousness
about potential biases that might arise by leaving out an important
explanatory variable”
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The purpose of modeling matters

From Wooldridge, page 198

Consider the housing price example from... In that case, we wanted to test the rationality of housing price assessments. We

regressed log(price) on log(assess), log(lotsize), log(sqrft), and bdrms and tested whether the latter three variables had zero

population coefficients while log(assess) had a coefficient of unity [assessments should be highly correlated to prices]. But what

if we change the purpose of the analysis and estimate a hedonic price model, which allows us to obtain the marginal values of

various housing attributes? Should we include log(assess) in the equation? The adjusted R-squared from the regression with

log(assess) is .762, while the adjusted R-squared without it is .630. Based on goodness-of fit only, we should include log(assess).

But this is incorrect if our goal is to determine the effects of lot size, square footage, and number of bedrooms on housing

values. Including log(assess) in the equation amounts to holding one measure of value fixed and then asking how much an

additional bedroom would change another measure of value. This makes no sense for valuing housing attributes. If we

remember that different models serve different purposes, and we focus on the ceteris paribus interpretation of regression, then

we will not include the wrong factors in a regression model.
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Saturated models

Saturated model has at least two meanings

Precise definition: a saturated model has as many parameters as data
values

The predicted values from the saturated model will fit the data
perfectly

We can’t estimate the variance
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Saturated model

A (useless) model that fits the data perfectly

reg colgpa $covars1 $covars2 $covars3 if _n < 12

Source | SS df MS Number of obs = 11

-------------+---------------------------------- F(10, 0) = .

Model | 1.58909072 10 .158909072 Prob > F = .

Residual | 0 0 . R-squared = 1.0000

-------------+---------------------------------- Adj R-squared = .

Total | 1.58909072 10 .158909072 Root MSE = 0

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | 0 (omitted)

male | -.6000001 . . . . .

campus | .0312501 . . . . .

ACT | .0125 . . . . .

mothcoll | -.8203124 . . . . .

voluntr | 0 (omitted)

PC | .2984375 . . . . .

greek | 0 (omitted)

car | -.4750001 . . . . .

bgfriend | .425 . . . . .

clubs | .5265624 . . . . .

skipped | -.1156251 . . . . .

alcohol | -.2875 . . . . .

gradMI | 0 (omitted)

_cons | 3.731251 . . . . .

------------------------------------------------------------------------------
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Saturated model

Perfect prediction for the observations that were used to estimate
the model

predict hat2

list colgpa hat2 in 1/14

+-------------------+

| colgpa hat2 |

|-------------------|

1. | 3 3 |

2. | 3.4 3.4 |

3. | 3 3 |

4. | 3.5 3.5 |

5. | 3.6 3.6 |

|-------------------|

6. | 3 3 |

7. | 2.7 2.7 |

8. | 2.7 2.7 |

9. | 2.7 2.7 |

10. | 3.8 3.8 |

|-------------------|

11. | 2.8 2.8 |

12. | 2.9 3.290625 |

13. | 3 3.717188 |

14. | 2.9 1.639062 |

+-------------------+
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Saturated model

The second common meaning (less precise) is for models in which we
use all the available variables we measured but we have many more
observations than explanatory variables

Sometimes people use the term saturated models for models that
include a large set of variables and their interactions (less precise, too)

But the technical meaning is reserved for models with as many
parameters as observations
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Big picture

Not a good idea to include too many variables but hard to tell how
many is too many

Good idea to build models from small to large but not too large

Good idea to think if “holding other variables constant” is plausible
even if VIF or correlation among variables is not that high (think
conceptually)

Building models by first focusing on relationship of interest and then
adding more complexity helps a lot

It helps you figure out which variable is important – which variable
changes p-values, coefficients, R2, etc
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Panel data (aka longitudinal data)

We won’t cover panel data (economics) or longitudinal data
(statistics and the rest of the world)

Suppose that we have the model

wagei = β0 + β1agei + β2educationi + β3looksi + β4femalei + εi

With εi ∼ N(0, σ2) and i indexes an individual

But now instead of measuring each person one time we have repeated
measurements, say, every 3 years

These type of models require different methods because now εi is not
independent; it’s still identically distributed but not iid anymore
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Panel data (aka longitudinal data)

Clearly, the error for person i in the first measurement is not
independent from the error in the second measurement

Remember that a key step in MLE was that we could multiply the
likelihood because observations were independent

In essence, longitudinal data analysis is about modeling the
dependence among observations

It’s the same as clustered data (groups that are similar are correlated)

Notation changes too
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Panel data (aka longitudinal data)

To make it clear that the model is different, we change the notation.
For example,

wageit = β0 + β1ageit + β2educationit + β3looksit + β4femaleit + εit

We read it as “wage for individual i at time t is a function age for
individual i at time t...”

If we are even more careful, we can drop the subscript t for female
because (usually) sex doesn’t not depend on time

You will cover some panel data methods next semester. It’s a fairly
large field in statistics

Mixed models (random effects), hierarchical models, GEE, Generalized
Linear Mixed Models are examples of models for longitudinal data
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Clustered data

With clustered data, you can have something like

wageis = β0 + β1ageis + β2educationis + β3looksis + β4femaleis + εis

We read it as wage for “individual i in state s is a function age for
individual i in state s...”

Of course, you could have three subscripts: “wageits : wage for person
i at time t in state s”

The notation helps you understand the model (don’t be careless!)

Take a class on longitudinal data analysis
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Adjusting

Remember the dataset on income and age we used for the splines
example

We can show the predicted values of the regression between income
and age very easily (only one predictor)

But once we add education we get a strange looking graph
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Adjusting

Comparing two models

* Just age

reg income age

predict inchat

scatter income age || line inchat age, sort legend(off) saving(g1.gph, replace)

graph export g1.png, replace

* Age and education

reg income age educ

predict inchat1

scatter income age || line inchat1 age, sort legend(off) saving(g2.gph, replace)

graph export g2.png, replace

graph combine g1.gph g2.gph

graph export gc.png, replace
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Comparing models

In second graph, predictions depend on years of education, too
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Adjusting

We could instead present the relationship between age and income
holding education constant

There is no rule at which value you hold the other constant, typically
at the mean

If you have a 0/1 variable, you typically hold it at the mean, too,
which is a proportion

You could also compare the graphs at different values of education,
which can be fairly useful

We will do both
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Adjusting at mean

Hold education at its mean

Note the preserve and restore options. If in interactive mode, run all
the code from preserve to restore to avoid problems

The idea is to change the data to make the prediction but then go
back to the original dataset

Note too that I should have used the e(sample) option (I knew
there were no missings but better to add it)

qui sum educ

di r(mean)

14.58

preserve

reg income age educ

replace educ = 14.58

predict inchat_m

scatter income age || line inchat_m age, sort legend(off) ///

saving(g_m.gph, replace)

graph export gm.png, replace

restore
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Adjusting at mean

Of course, still a linear relationship between age and income but now
education is held at 14.58 in all the predictions
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Adjusting at mean

Compare models with education = 10 and education = 18 (less than
high school and masters’ degree)

preserve

reg income age educ

replace educ = 10

predict inchat_10

replace educ = 18

predict inchat_18

line inchat_10 age, sort || line inchat_18 age, sort color(red) ///

saving(g_10_18.gph, replace) legend(off)

graph export g10_18.png, replace

restore
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Adjusting at mean

As expected, more education, higher income. But why parallel? We
assumed so in model
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Adjusting at different values

Assume interactions (so different slope and different intercept)

preserve

reg income c.age##c.educ

replace educ = 10

predict inchat_101

replace educ = 18

predict inchat_181

line inchat_101 age, sort || line inchat_181 age, sort color(red) ///

saving(g_10_181.gph, replace) legend(off)

graph export g10_181.png, replace

restore

34



Adjusting at different values, interacted

More interesting. But we just assumed so, too. We would need to
test and compare models to figure out which one fits the data better
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Summary

Bias and variance is a key concept in statistics that shows up in many
forms

Make models as simple as possible but not simpler

Parsimony is a good thing with modeling

Get used to presenting adjusted graphs; we will see more ways of
presenting predictions next week
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