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Collinearity

We have seen that interpreting multiple linear models involves the
idea of “holding other factors constant” or “once we have taken the
other factors into account”

In the model wagei = β0 + β1agei + β2educi + ui where ui ∼ N(0, σ2)

We interpret β1 as the effect on average wage for an additional year
of age, holding education constant

We know that with observational data holding other factors
constant is not literal (recall the Ted Mosby, architect, theory of
statistics)

If we don’t have experimental data, holding factors constant is
figuratively, not literally
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Collinearity

Regardless of the data generating process, we can always interpret the
regression in this way (either literally or figuratively)

But what if holding the other variable constant doesn’t make sense
even figuratively?

For example, if we have a sample of young people, an extra year of
age also implies another year of education (assuming that they all go
to school)

In this simple scenario we can’t really hold education constant when
analyzing a change in the value of age – or the “effect” of age

Let’s call this the Ted Mosby modeling failure
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Perfect collinearity

If one variable is a linear combination of another, then we can’t
obtain parameter estimates

sysuse auto

reg price mpg

Source | SS df MS Number of obs = 74

-------------+---------------------------------- F(1, 72) = 20.26

Model | 139449474 1 139449474 Prob > F = 0.0000

Residual | 495615923 72 6883554.48 R-squared = 0.2196

-------------+---------------------------------- Adj R-squared = 0.2087

Total | 635065396 73 8699525.97 Root MSE = 2623.7

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | -238.8943 53.07669 -4.50 0.000 -344.7008 -133.0879

_cons | 11253.06 1170.813 9.61 0.000 8919.088 13587.03

------------------------------------------------------------------------------
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Perfect collinearity

Create a collinear variable (a linear function of one of the covariates)

gen xcol = 2*mpg + 5

. reg price mpg xcol

note: mpg omitted because of collinearity

Source | SS df MS Number of obs = 74

-------------+---------------------------------- F(1, 72) = 20.26

Model | 139449474 1 139449474 Prob > F = 0.0000

Residual | 495615923 72 6883554.48 R-squared = 0.2196

-------------+---------------------------------- Adj R-squared = 0.2087

Total | 635065396 73 8699525.97 Root MSE = 2623.7

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | 0 (omitted)

xcol | -119.4472 26.53834 -4.50 0.000 -172.3504 -66.54395

_cons | 11850.3 1299.383 9.12 0.000 9260.024 14440.57

------------------------------------------------------------------------------

6



Perfect collinearity

Perfect collinearity is easy to detect because something is obviously
wrong and Stata checks for it

Remember that using matrix algebra β̂ = (X ′X )−1X ′Y

If the the matrix X ′X has a column that is a linear combination of
another, we can’t take the inverse (X ′X )−1

That’s why when we code dummy variables we leave one as the
reference group (because the constant in the model is a vector of 1s)

You will get a warning message (don’t ignore it)

Perfect collinearity is a not an issue in the sense that it’s often a
mistake and you get a warning. But what if two variables are just
highly correlated?
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Collinearity

Create a highly correlated variable but not perfectly collinear

gen xcol1 = 2*mpg + rnormal(0,5)

corr xcol1 mpg

| xcol1 mpg

-------------+------------------

xcol1 | 1.0000

mpg | 0.9482 1.0000

. reg price mpg xcol1

Source | SS df MS Number of obs = 74

-------------+---------------------------------- F(2, 71) = 10.99

Model | 150153413 2 75076706.3 Prob > F = 0.0001

Residual | 484911983 71 6829746.25 R-squared = 0.2364

-------------+---------------------------------- Adj R-squared = 0.2149

Total | 635065396 73 8699525.97 Root MSE = 2613.4

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | -436.4372 166.4158 -2.62 0.011 -768.2609 -104.6136

xcol1 | 91.07191 72.74697 1.25 0.215 -53.98143 236.1253

_cons | 11576.59 1194.518 9.69 0.000 9194.79 13958.39

------------------------------------------------------------------------------
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Collinearity

We do get results and nothing is too obvious is wrong but look closely

qui reg price mpg

est sto m1

qui reg price mpg xcol1

est sto m2

est table m1 m2, se p stats(N r2 r2_a F)

----------------------------------------

Variable | m1 m2

-------------+--------------------------

mpg | -238.89435 -436.43722

| 53.076687 166.41579

| 0.0000 0.0107

xcol1 | 91.071911

| 72.746972

| 0.2147

_cons | 11253.061 11576.591

| 1170.8128 1194.5184

| 0.0000 0.0000

-------------+--------------------------

N | 74 74

r2 | .21958286 .23643772

r2_a | .20874373 .21492892

F | 20.258353 10.992606

----------------------------------------

legend: b/se/p

9



Collinearity

Model fit is still good and even better as measured by R2
a so we

conclude that the new variable is a predictor of price

But the coefficient for mpg was reduced by half (or twice as large in
absolute value)

The new variable “explained” some of the relationship between mpg
and price (you could conclude that xcol1 was a confounder)

The SEs of mpg went up by a lot, almost three times, p-value
increased

F statistic of the model went down

Those are the usual signs showing that you have highly correlated
variables in the model
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Another example

The example above is typical of collinearity

Collinearity makes estimation “unstable” in the sense that the
inclusion of one variable changes SEs and parameter estimates

Perhaps the best way to think about collinearity is that one variable
could be used as a proxy of the other because they measure similar
factors affecting an outcome

Sometimes, though, is more complicated and not so clear and
collinearity could be more complex to detect (more on this soon)
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Another example

Adding weight to the model

reg price mpg weight

Source | SS df MS Number of obs = 74

-------------+---------------------------------- F(2, 71) = 14.74

Model | 186321280 2 93160639.9 Prob > F = 0.0000

Residual | 448744116 71 6320339.67 R-squared = 0.2934

-------------+---------------------------------- Adj R-squared = 0.2735

Total | 635065396 73 8699525.97 Root MSE = 2514

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mpg | -49.51222 86.15604 -0.57 0.567 -221.3025 122.278

weight | 1.746559 .6413538 2.72 0.008 .467736 3.025382

_cons | 1946.069 3597.05 0.54 0.590 -5226.245 9118.382

------------------------------------------------------------------------------

est sto m3

corr mpg weight

| mpg weight

-------------+------------------

mpg | 1.0000

weight | -0.8072 1.0000
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Effect on inference

Again, estimates unstable, mpg not significant now

est table m1 m3, se p stats(N r2 r2_a F)

----------------------------------------

Variable | m1 m3

-------------+--------------------------

mpg | -238.89435 -49.512221

| 53.076687 86.156039

| 0.0000 0.5673

weight | 1.7465592

| .64135379

| 0.0081

_cons | 11253.061 1946.0687

| 1170.8128 3597.0496

| 0.0000 0.5902

-------------+--------------------------

N | 74 74

r2 | .21958286 .29338912

r2_a | .20874373 .27348459

F | 20.258353 14.739815

----------------------------------------

legend: b/se/p
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Proxy, confounder?

Is mpg and weight measuring the same concept? Is one a proxy for
the other? Clearly not

In some cases, it’s easy to conceptually settle on one variable over the
other because their correlation is due to both measuring the same
concept

For example, think of two tests that measure “intelligence”

But the auto example is more complicated. It’s not that cars with
better mpg are less expensive, it’s that we are bunching together
different types of cars and markets

Trucks are heavier and more expensive and have less mpg; other
factors being constant, better mileage implies higher prices

Regardless of the interpretation, adding highly correlated variables is a
problem for both, inference and interpretation
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Signs of collinearity

Typical signs of collinearity:

1) Large changes in estimated parameters when a variable is added or
deleted

2) Large changes when some data points are added or deleted

3) Signs of coefficients do not agree with expectations (subject
knowledge)

4) Coefficients of variables that are expected to be important have
large SEs (low t-values, large p-values)

If two variables highly correlated measure the same concept, then
drop one. If not, we need subject knowledge to understand what is
driving the results and what can be done about it

We might need better data, more data, or other covariates in our
model
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Some solutions

If two highly-correlated variables measure the same concept, then
drop one

If not, we need subject knowledge to understand what is driving the
results and what can be done about it

Which variable is conceptually more important? Do we want to show
the relationship between price and mpg? Or the effect of weight on
price?

We might need better data, more data, or other covariates in our
model

Note something though: this is a CONCEPTUAL PROBLEM, not
a stats problem. We will see ways to detect it but the solution is
conceptual, based on subject knowledge

16



Detecting the problem early

In a exploratory analysis, you should have noticed that some
predictors are highly correlated

Collinearity also highlights the importance of carefully exploring the
relationship of interest, for example, price and mpg before adding
other variables in the model

When you add one variable at a time, you can see the impact on SEs
and parameter estimates. Always, always, use est sto and est table
to build models

If you follow this procedure, you will find the variable(s) that are
highly collinear early

We always need subject knowledge to understand the reasons for high
correlation
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Digression: prediction

Remember what I say all the time: every time you hear rule of
thumbs or things you should do or not should do in statistics,
remember the context

We are discussing collinearity in the context of models that we are
estimating because we care about inference (hypothesis testing,
description, causality)

But what if we only care about prediction? Not uncommon to use
variables that are correlated. Not uncommon to use variables that
measure similar concepts. We don’t care about Ted Mosby here

But it’s still a problem of interpretation. For example, some machine
learning algorithms (say, Lasso) drop some variables and keep others.
But you can’t conclude that the variables dropped were not
“important” because some of them could be correlated with variables
kept in the model. Next time you run the model the variable variable
dropped could be kept
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Another example

Data on total body fat using measurements of body fat on triceps,
thigh, and mid-arm

All measure the same concept, body fat, and clearly will be correlated

webuse bodyfat, clear

qui reg bodyfat

est sto m1

qui reg bodyfat tricep

est sto m2

qui reg bodyfat tricep thigh

est sto m3

qui reg bodyfat tricep thigh midarm

est sto m4
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Another example

Same as before, large changes when we add variables; thigh and
midarm measures are negative

------------------------------------------------------------------

Variable | m1 m2 m3 m4

-------------+----------------------------------------------------

triceps | .85718657 .22235263 4.3340847

| .12878079 .3034389 3.0155106

| 0.0000 0.4737 0.1699

thigh | .65942183 -2.8568416

| .29118727 2.5820146

| 0.0369 0.2849

midarm | -2.1860563

| 1.5954986

| 0.1896

_cons | 20.195 -1.4961065 -19.174248 117.08445

| 1.1417778 3.3192346 8.3606404 99.782377

| 0.0000 0.6576 0.0348 0.2578

-------------+----------------------------------------------------

N | 20 20 20 20

r2 | 0 .71109665 .77805187 .80135852

r2_a | 0 .69504647 .75194033 .76411324

F | 0 44.304574 29.797237 21.515708

------------------------------------------------------------------

legend: b/se/p
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Another example

High correlation between triceps and thigh measurements but not
with midarm

corr bodyfat tricep thigh midarm

(obs=20)

| bodyfat triceps thigh midarm

-------------+------------------------------------

bodyfat | 1.0000

triceps | 0.8433 1.0000

thigh | 0.8781 0.9238 1.0000

midarm | 0.1424 0.4578 0.0847 1.0000

Look at R2. If you care about prediction, using all three variables
would be best... The model with all three measurements is “better”
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Digression II: Which one is better at predicting?
We can use the mean square error to compare prediction:
1
n

∑
(yi − ŷi )

2

quietly {

reg bodyfat tricep

predict _r1, res

gen res21 = _r1^2

sum res21

scalar mse1 = r(mean)

reg bodyfat tricep thigh

predict _r2, res

gen res22 = _r2^2

sum res22

scalar mse2 = r(mean)

reg bodyfat tricep thigh midarm

predict _r3, res

gen res23 = _r3^2

sum res23

scalar mse3 = r(mean)

drop _*

}

di mse1 " " mse2 " " mse3

7.1559845 5.4975387 4.9202454

The model with all three measures is better. Only 20 obs, overfitting
always a concern

22



More complicated forms

It’s possible that collinearity will take more complicated forms , not
just two predictors being highly correlated

It could be that two variables combined are highly related to a third
variable. This is harder to detect and understand

One way to diagnose collinearity is to investigate how each
explanatory variable in a model is related to all other explanatory
variables in the model

One metric: variance inflation factor or VIF
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Variance inflation factor

The variance inflation factor for variable Xj is defined as

VIFj = 1
1−R2 for j = 1, ..., p

The R2 in VIF is the R2 obtained from regressing Xj against all
other explanatory variables (p − 1). (We leave the outcome
variable out)

If R2 is low, VIF will be close to 1. If R2 is high, VIF will be high

Note the logic. If you run the model, say,
X1 = γ0 + γ1X2 + · · · + γ5X5 and it has a high R2, that means that
the variables X2 to X5 are strong predictors of X1

A rule of thumb is that a VIF > 10 provides evidence of collinearity.
That implies that R2 ≥ 0.9

In HSR and social sciences a VIF above 3 could be problematic or at
least you should check covariates since it implies an R2 around 0.66
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VIF for body fat dataset

Calculation “by hand”

All are in the scary-high territory but we know that because they all
measure the same thing

* Tricep

qui reg tricep thigh midarm

di 1/(1-e(r2))

708.84239

* Thigh

qui reg thigh tricep midarm

di 1/(1-e(r2))

564.34296

* Midarm

qui reg midarm thigh tricep

di 1/(1-e(r2))

104.60593
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VIF for body fat dataset

There is of course a command for that

Note that some books define VIF as VIFj = 1 − R2 so Stata shows
both definitions

qui reg bodyfat tricep thigh midarm

estat vif

Variable | VIF 1/VIF

-------------+----------------------

triceps | 708.84 0.001411

thigh | 564.34 0.001772

midarm | 104.61 0.009560

-------------+----------------------

Mean VIF | 459.26
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Back to the auto dataset and caution

About those rule of thumbs. Does it mean that there is no collinearity
problem? Recall that the correlation between mpg and weight was
-0.81

estat vif

Variable | VIF 1/VIF

-------------+----------------------

mpg | 2.87 0.348469

weight | 2.87 0.348469

-------------+----------------------

Mean VIF | 2.87

No, it’s just that we have only two variables (remember, more
variables, higher R2)

Careful with things like if VIF < 10 no collinearity issues...
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Other solutions

The body fat example illustrates another possible solution

Rather than choosing one and dropping the rest, why not create
combination of all of them, which could be a stronger predictor of
body fat?

For example, take the average of the three measurements as a
covariate

Or the average of two, since thigh and tricep seem more related to
bodyfat
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Boby fat again

* Rowmean uses more information since it calculates the mean of the non-missing variables

egen avgmes = rowmean(tricep thigh midarm)

egen avgmes1 = rowmean(thigh tricep)

reg bodyfat tricep

est sto m1

reg bodyfat thigh

est sto m2

reg bodyfat midarm

est sto m3

reg bodyfat avgmes

est sto m4

reg bodyfat avgmes1

est sto m5

est table m1 m2 m3 m4 m5, se p stats(N r2 r2_a F)

29



Boby fat again
Actually, the combination of all three is not that great but just thigh
and tricep is best (or just thigh)

-------------------------------------------------------------------------------

Variable | m1 m2 m3 m4 m5

-------------+-----------------------------------------------------------------

triceps | .85718657

| .12878079

| 0.0000

thigh | .85654666

| .11001562

| 0.0000

midarm | .19942871

| .32662975

| 0.5491

avgmes | 1.0649015

| .18413573

| 0.0000

avgmes1 | .8911361

| .11456282

| 0.0000

_cons | -1.4961065 -23.634493 14.686779 -16.755308 -13.879817

| 3.3192346 5.6574136 9.095926 6.4267708 4.416461

| 0.6576 0.0006 0.1238 0.0178 0.0056

-------------+-----------------------------------------------------------------

N | 20 20 20 20 20

r2 | .71109665 .77104144 .02029031 .65011781 .77071908

r2_a | .69504647 .75832152 -.034138 .63067991 .75798126

F | 44.304574 60.616847 .37278969 33.445888 60.506316

-------------------------------------------------------------------------------

legend: b/se/p
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Factor analysis

Factor analysis is a data reduction technique

It creates a smaller set of uncorrelated variables

Results in an index or a combination, much like the average of the
measures but with different weights

Two types: exploratory (no pre-defined idea of structure) and
confirmatory (you have an idea and the analysis confirms)

Note that factor analysis does not take into account the outcome;
it just combines explanatory variables

It’s used a lot in surveys. Popular in psychology
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Summary

Always check for multicollinearity and think whether you are including
highly correlated variables in your models

A problem regardless of the model (linear, logit, Poisson, etc)

Nothing substitutes subject knowledge to understand what drives
multicollinearity

In easy cases, a matter of dropping one variable that is measuring the
same concept as another one

Gray area: do you care if two variables that you just want to
control for are highly correlated? Maybe not
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