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Outline

Dealing with heteroskedasticy of known form (old fashioned but worth
going over it)

Weighted least squares

Lowess once again

Examples
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Heteroskedasticity source is know: multiplicative constant

Suppose that we know or suspect that the variance is a function of
some or all the explanatory variables

For example: var(ε|x1, ...xp) = σ2f (x1, ..., xp)

f (x1, ..., xp) > 0 because the variance has to be positive. For the
moment, we will assume that we know the functional form for
f (x1, ..., xp)

Another way of writing this for an observation i :
σ2i = var(εi |x1i , ..., x1i ) = σ2f (x1i , ..., xpi )

Note that σ2 is constant on the right side (no subscript i) but it
varies according to the values of x1i , ..., xpi
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Example

Let’s go back to the income and age dataset and estimate the model

income = β0 + β2age + ε

webuse mksp1, clear

reg income age

Source | SS df MS Number of obs = 100

-------------+---------------------------------- F(1, 98) = 28.21

Model | 6.5310e+09 1 6.5310e+09 Prob > F = 0.0000

Residual | 2.2691e+10 98 231542958 R-squared = 0.2235

-------------+---------------------------------- Adj R-squared = 0.2156

Total | 2.9222e+10 99 295173333 Root MSE = 15217

------------------------------------------------------------------------------

income | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | 494.4258 93.09552 5.31 0.000 309.6808 679.1709

_cons | 22870.1 4133.273 5.53 0.000 14667.75 31072.45

------------------------------------------------------------------------------

predict res, res

scatter res age, yline(0)

4



Example

Assuming that the residual variance is a function of age is a
reasonable assumption

We saw last class that the graphs and the heteroskedastic tests
pointed towards age as the source of the problem
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Remember the Breusch-Pagan test?

The Breusch-Pagan test models εi
2 = γ0 + γagei + ui

qui reg income age

predict ires, rstandard

gen ires2 = ires^2

scatter ires2 age || lfit ires2 age, legend(off)

The square of the residual could be assumed to be a linear function of
age
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Multiplicative constant

We will assume that f (age) = age, so var(εi |agei ) = σ2agei

Age is always positive so no risk of getting a negative variance
(otherwise, we could take the square).

The standard error is, of course, σ
√
agei

Once we assume a functional form for f (age) the rest is not too
complicated

The idea is very simple: we will transform the variables in the
original model in such a way that the variance of the new model
will be constant given values of age
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Multiplicative constant

The original model is incomei = β0 + β1agei + εi

What about if we divide the model by 1√
age to obtain:

incomei√
agei

= β0√
agei

+ β1
agei√
agei

+ εi√
agei

?

It looks a bit odd and arbitrary but it turns out that this
transformation makes the model have constant variance
(homoskedastic)

Remember that we assumed that the true variance conditional on
age is var(εi |agei ) = E (εi

2|agei ) = σ2agei . So what is the expected
value of the transformed variance?

E [( εi√
agei
|agei )2] = E [εi |agei 2]

agei
= σ2agei

agei
= σ2

If confused, it’s easier if you remove the conditioning on age:

E [( εi√
agei

)2] = E [εi
2]

agei
= σ2agei

agei
= σ2
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Big picture

Remember: we assumed the variance depends on one or more
covariates: σ2f (x1i , ..., xpi )

In the example with only one explanatory variable, we assumed the
simplest functional form: σ2agei

We transformed the data to come up with a new model that has
constant variance

Of course, we do make an assumption: we assume that we have a
good model of the source of heteroskedasticity

If the assumption is wrong, then the expected value of the variance in
the transformed model no longer is constant. This is a strong
assumption that can’t be verified with the data

We do this to have better estimates of the variance-covariance
matrix; the new parameters do not have a useful interpretation
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Big picture: weighted least squares

We will get back to this shortly but the way we will estimate this
model in Stata is by weighting the regression by 1

age

The weight is proportional to the inverse of the variance
var(εi |agei ) = σ2agei

The intuition is actually very simple: we are giving less importance
to observations that have a higher variance. For older people, 1

age
is lower than for younger people

This is what we want since we assumed (based on some evidence)
that the variance is a linear function of age

If we were to transform the variables, we would have to divide all the
variables by 1√

age
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Example

Stata implementation is fairly easy; we use the option [aw] to
incorporate the weights

gen w = 1/age

qui reg income age educ

est sto orig

qui reg income age educ [aw=w]

est sto weig

est table orig weig, se p stats(N)

----------------------------------------

Variable | orig weig

-------------+--------------------------

age | 440.24407 460.26434

| 105.68708 102.59664

| 0.0001 0.0000

educ | 706.88408 780.33877

| 654.62413 575.55667

| 0.2829 0.1783

_cons | 14800.355 12902.949

| 8538.3265 6716.1242

| 0.0862 0.0576

-------------+--------------------------

N | 100 100

----------------------------------------

Focus on SEs; remember, we care about the new
variance-covariance matrix
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Example

So how doe this compare to the sandwich?

qui reg income age educ, robust

est sto sand

est table orig weig sand, se p stats(N)

-----------------------------------------------------

Variable | orig weig sand

-------------+---------------------------------------

age | 440.24407 460.26434 440.24407

| 105.68708 102.59664 94.815869

| 0.0001 0.0000 0.0000

educ | 706.88408 780.33877 706.88408

| 654.62413 575.55667 612.81005

| 0.2829 0.1783 0.2515

_cons | 14800.355 12902.949 14800.355

| 8538.3265 6716.1242 7245.2375

| 0.0862 0.0576 0.0438

-------------+---------------------------------------

N | 100 100 100

-----------------------------------------------------

Which one is better? With larger samples, bet is on the sandwich
because it doesn’t depend on knowing the form of heteroskedasticity
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Example: Wooldrigde 8.1

Model to explain net total financial wealth (nettfa) as a function of
income and other covariates including age, sex, and an indicator of
whether the person is eligible for 401K

Age enters quadratic and is centered at 25

We will replicate the models presented in Table 8.1, page 274

Sample restricted to single people, fsize = 1

We assume source of unequal variance is due to income
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Example: Wooldridge 8.1

bcuse 401ksubs

qui reg nettfa inc

est sto m1

qui reg nettfa inc [aw=1/inc]

est sto m2

qui reg nettfa inc age252 male e401k

est sto m3

qui reg nettfa inc age252 male e401k [aw=1/inc]

est sto m4

Note that we do not need to create a weight variable; option aw takes
expressions
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Example: Replicate Table 8.1

est table m1 m2 m3 m4, se p stats(N)

------------------------------------------------------------------

Variable | m1 m2 m3 m4

-------------+----------------------------------------------------

inc | .82068148 .78705231 .7705833 .74038434

| .0609 .06348144 .061452 .06430291

| 0.0000 0.0000 0.0000 0.0000

age252 | .02512668 .01753728

| .00259339 .0019315

| 0.0000 0.0000

male | 2.4779269 1.8405293

| 2.0477762 1.5635872

| 0.2264 0.2393

e401k | 6.8862229 5.1882807

| 2.1232747 1.7034258

| 0.0012 0.0024

_cons | -10.570952 -9.5807017 -20.98499 -16.702521

| 2.0606775 1.6532837 2.472022 1.9579947

| 0.0000 0.0000 0.0000 0.0000

-------------+----------------------------------------------------

N | 2017 2017 2017 2017

------------------------------------------------------------------

legend: b/se/p

In general SEs went up, not by a lot
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Weighted regression

Weighted regression is an example of generalized least squares or
GLS

Weighted models, not just our regular linear model, play an important
role in many applied areas

You will encounter them in survey data: each observation is given a
weight because each observation represents many people in the
population

Survey weights tend to be a black box: they are adjusted for
non-response and other factors like oversampling of certain
populations (like the very old or minorities)

The weights add up to the population size

(See the article about one person influencing polls in last election
because that person was given a very large weight)
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Weighted regression

Next semester, you will see that you can use the inverse of the
propensity score to obtain a weighted treatment effect

The weights are designed to give more importance to observations
that are similar between treatment and control groups

Unweighted, treatment and control are not comparable; weighted,
they will become comparable (at least for the observed covariates)

You will need to assume that unobservables are also balanced, which
tends to be a difficult assumption to satisfy

In other words, you’ll need to assume ignorable treatment assignment
or no unmeasured confounders or selection on observables or
exchangeability

Our old friend Lowess is also an example of a weighted model
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Lowess,redux

Lowess is handy way to compute the E [Y ] around an area of X ; less
sensitive (i.e. robust) to sparse points and it’s not influenced by all
points (hence the local part). Recall that Lowess stands for Locally
Weighted Scatterplot Smoothing

Lowess is an example of a non-parametric method and a weighted
regression

1 For each point in the data, use a window around that point on the
x-axis to calculate E [Y ]. Use only observations within that window

2 Regress y on x around window and weigh the data so that
observations closer to the chosen point are given more weight
(importance)

3 Predict ŷ at chosen point x
4 Repeat algorithm for all points in the dataset

The details change a bit but that’s the essence of the method; it’s a
computationally intense method – needs to run a weighted regression
for each point in dataset
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Code for Lowess

If no options, default is bw(0.8); always a good idea to try other
windows
lowess colgpa hsgpa, bw(0.1) nograph gen(cgpa_l1)

lowess colgpa hsgpa, bw(0.6) nograph gen(cgpa_l6)

lowess colgpa hsgpa, bw(0.8) nograph gen(cgpa_l8)

lowess colgpa hsgpa, bw(0.99) nograph gen(cgpa_l9)

scatter colgpa hsgpa || line cgpa_l1 hsgpa, sort color(red) ///

saving(l1.gph, replace) legend(off) title("bw(0.1)")

scatter colgpa hsgpa || line cgpa_l6 hsgpa, sort color(red) ///

saving(l6.gph, replace) legend(off) title("bw(0.6)")

scatter colgpa hsgpa || line cgpa_l8 hsgpa, sort color(red) ///

saving(l8.gph, replace) legend(off) title("bw(0.8)")

scatter colgpa hsgpa || line cgpa_l9 hsgpa, sort color(red) ///

saving(l9.gph, replace) legend(off) title("bw(0.99)")

graph combine l1.gph l6.gph l8.gph l9.gph, title("Lowess")

graph export lowess.png, replace
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Lowess “smoothed” college and high school grades;
different bandwidths
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Lowess weights

The weights in Lowess are a bit complicated but not uncommon

You’ll encounter similar non-parametric methods in regression
discontinuity (more weight to observations close to cut-off points)

Stata has the details:
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How do weights work?

Here is an intuitive way to understand weights

We will simulate 10 observations and estimate a model in which each
observation has the same weight

Then we will change the weight of the last observation so it’s worth
for 10 observations

We will see that the new weighted model is the same as the model
in which we replicate the last observation 10 times and run an
unweighted model
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How do weights work?

Here is the code

clear

set seed 1234567

set obs 10

gen x = rnormal(1, 3)

gen y = 2 + 3*x + rnormal(0,1)

gen wgt = 1

* No weights

reg y x

est sto orig

* Same weight

reg y x [aweight = wgt]

est sto samew

* Make the last observation count for 10

gen wgt1 = wgt

replace wgt1 = 10 if _n==10

* Weighted

reg y x [aweight = wgt1]

est sto wgt1

* Expand obs

expand 10 if _n ==10

* Unweighted but expanded

reg y x

est sto expand
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How do weights work?

Compare models; the new weight is the same as replicating the last
observation 10 times (well, 9)

. est table orig samew wgt1 expand

------------------------------------------------------------------

Variable | orig samew wgt1 expand

-------------+----------------------------------------------------

x | 2.9494298 2.9494298 2.9869977 2.9869977

_cons | 2.0051343 2.0051343 1.8564805 1.8564805

------------------------------------------------------------------

Careful, several types of weights (inverse probability, analytical).
See “help weights”

Here, we are using analytic weights, their value doesn’t matter, only
differences (Stata scales them)
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Back to heteroskedasticity

The weighted SEs are more efficient so we want to use them for
statistical inference; we do not care about the new R2 or the
estimated coefficients

The most important question is, what if we got the functional
form of the unequal variance wrong?

In the income, age, and education model we suspect age is the reason
for unequal variance, but is f (agei ) = agei right?

In most practical applications, we do not know of course and models
are seldom so simple
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Problem getting f () wrong

1) We get the SEs wrong, of course. But we can apply robust
regression to the weighted OLS estimates... (getting meta here)

2) If f () wrong, then weighted SEs not more efficient

So what should we do?

In most practical applications, we do not know the exact reason why
there is unequal variance

If samples are large enough, most practitioners will use the
Huber-White robust SEs. Period

26



Compare models

Let’s compare all options

* Compare models

* No correction

qui reg nettfa inc

est sto m1

* WLS

qui reg nettfa inc [aw=1/inc]

est sto m2

* Huber-White

qui reg nettfa inc, robust

est sto rob1

* No correction

qui reg nettfa inc age252 male e401k

est sto m3

* WLS

qui reg nettfa inc age252 male e401k [aw=1/inc]

est sto m4

* Huber-White

qui reg nettfa inc age252 male e401k, robust

est sto rob2
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Compare models

My bet is on robust option (N= 2017)
est table m1 m2 rob1 m3 m4 rob2, se p stats(N F)

--------------------------------------------------------------------------------------------

Variable | m1 m2 rob1 m3 m4 rob2

-------------+------------------------------------------------------------------------------

inc | .82068148 .78705231 .82068148 .7705833 .74038434 .7705833

| .0609 .06348144 .10359361 .061452 .06430291 .09957192

| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

age252 | .02512668 .01753728 .02512668

| .00259339 .0019315 .00434415

| 0.0000 0.0000 0.0000

male | 2.4779269 1.8405293 2.4779269

| 2.0477762 1.5635872 2.0583585

| 0.2264 0.2393 0.2288

e401k | 6.8862229 5.1882807 6.8862229

| 2.1232747 1.7034258 2.2865772

| 0.0012 0.0024 0.0026

_cons | -10.570952 -9.5807017 -10.570952 -20.98499 -16.702521 -20.98499

| 2.0606775 1.6532837 2.5302719 2.472022 1.9579947 3.495186

| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-------------+------------------------------------------------------------------------------

N | 2017 2017 2017 2017 2017 2017

F | 181.59949 153.71407 62.76006 73.747631 63.127351 28.960727

--------------------------------------------------------------------------------------------

legend: b/se/p
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Summary

Heteroskedasticity is more common than not

It has become the standard practice with larger sample to just add
the robust option

Careful with likelihood ratio tests, use the “test” command for testing
if you use robust

Use the tests for heteroskedasticity if in doubt

Get the logic of weighted regression; it will come back often...
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