Week 10: Heteroskedasticity

Marcelo Coca Perraillon

University of Colorado Anschutz Medical Campus

Health Services Research Methods I HSMP 7607 2019

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.

Updated notes are here: https://clas.ucdenver.edu/marcelo-perraillon/ teaching/health-services-research-methods-i-hsmp-7607

Outline

- The problem of (conditional) unequal variance: heteroskedasticity
- Correcting and testing for heteroskedasticity
- The sandwich estimator
- Examples

Big picture

- Heteroskedasticity is so common that we should just assume it exists
- We can perform some tests to detected it
- The solutions depend on the source of heteroskedasticity
- The problem is not about the bias or consistency of the OLS estimates; the issue is that SEs are not correct in the presence of heteroskedasticity
- We will follow Chapter 8 of Wooldridge

Graphically

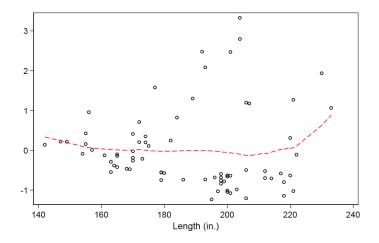
We can see the problem graphically checking the residuals. As I said, heteroskedasticiy is everywhere in the linear model

sysuse auto

```
* Do everything quietly
```

```
quietly {
    reg price length
    predict resi, rstandard
}
* See different options
scatter resi length, msymbol(Oh) msize(small) legend(off) || ///
    lowess resi length, color(red) xline() saving(g1.gph, replace)
graph export g1.png, replace
```

Graphically



That funnel shape is quite common. Why? Well, in part it's because of fewer observations at the tails Digression: talking Stata

- Saving graphs in a file. Stata 15 has a bunch of new commands to create "reports" using PDF, Word, or HTML (putpdf, putdocx, and dyndoc)
- Syntax not too pretty but at least you can save all graphs in one document

* Example

```
* At the start of do file:
putpdf begin
```

```
* Create graphs
scatter y x, saving(g1.gph)
graph export g1.gph
* "Put" it on PDF file
putpdf paragraph, halign(center)
putpdf image g1.png
scatter y1 x1, saving(g2.gph)
graph export g2.gph
```

```
putpdf paragraph, halign(center)
putpdf image g2.png
```

```
* Write PDF file
putpdf save filewithgraphs.pdf, replace
```

Homoskedasticity

- In the linear model $y_i = \beta_0 + \beta_1 x \mathbf{1}_i + \cdots + x p_p + \epsilon_i$ we assumed that $\epsilon_i \sim N(0, \sigma^2)$
- That is, the error terms have all the same variance conditional on all explanatory variables: var(ε_i|x1,...,xp) = σ²
- To simplify, we will focus on the simple linear model (only one covariate). In the presence of heteroskedasticity: var(ε_i|x_i) = σ_i²

Homoskedasticity

- In the SLR model, we can write the variance of $\hat{\beta}_1$ as $var(\hat{\beta}_1) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma_i^2}{\sum_{i=1}^{n} (x_i - \bar{x})^4}$
- If we have homoskedasticity the formula reduces to the one we saw in Chapter 2 (2.22):

$$\mathsf{var}(\hat{eta}_1) = rac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- But in the presence of heteroskedasticity we can't no longer simplify that formula
- Remember that the variances are also estimated when we estimate the coefficients

A simple solution

- The problem now is that we know that the variance depends on the value of the covariate X
- One solution is rather simple: we just estimate the variance conditional on the values of X
- White (1980) introduced an estimator for the variance in the presence of unknown heteroskedasticity. The idea is to estimate σ_i²:

$$\operatorname{var}(\hat{eta}_1) = rac{\sum_{i=1}^n (x_i - \bar{x})^2 \hat{\epsilon_i}^2}{\sum_{i=1}^n (x_i - \bar{x})^4}$$

Huber-White robust standard errors

- In the previous equation, $\hat{\epsilon_i}^2$ is the **estimated residual** of the regression
- The estimation proceeds in two steps: 1) Estimate the original regression of Y on X and 2) Obtain the residuals to estimate the **robust** variance
- (Remember what I told you about the term "robust" in statistics. Always ask yourself robust to what? In this case, robust to heteroskedasticity problems)
- In matrix notation, the variance-covariance matrix is $var(\hat{\beta}) = \sigma^2 (X'X)^{-1}$
- The Huber-White robust variance-covariance matrix is

•
$$\operatorname{var}(\hat{\beta}_{\operatorname{rob}}) = (X'X)^{-1}X'\hat{\Sigma}(X'X)^{-1}$$

Huber-White robust standard errors

- $\operatorname{var}(\hat{\beta}_{\operatorname{rob}}) = (X'X)^{-1}X'\hat{\Sigma}(X'X)^{-1}$
- \blacksquare $\hat{\Sigma}$ is the variance-covariance matrix from the original model
- The way the formula looks is the reason why Huber-White robust standard errors are (affectionately?) referred to as the sandwhich estimator
- The intuition is that we will correct for the heteroskedasticity problem in (sort of) the same way we diagnose the problem: we will, empirically, estimate a variance using the residuals
- Importantly, we do not need to know the **source** of heteroskedasticity

Example

■ Another example just to show you some graphs...

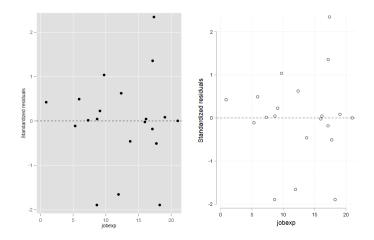
* Load data use https://www reg income job		illiam/sta	tafiles/reg	g01.dta,	clear		
Source	SS	df	MS	Number (of obs =	-	20
+-				- (-)			1.39
Model	130.495675	1	130.495675	5 Prob	> F	=	0.2538
Residual	1689.9298	18	93.8849889	R-sq	uared	=	0.0717
+-				- Adjī	R-squared	=	0.0201
Total	1820.42548	19	95.8118671	l Root	MSE	=	9.6894
	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
	.4799311						
cons 18.34387 5.586783 3.28 0.004 6.606476 30.08127 predict res if e(sample), rstandard search plotplain set scheme plottig scatter res joberp, jitter(2) yline(0) saving(res1.gph, replace) set scheme plotplain							

```
scatter res jobexp, jitter(2) yline(0) saving(res2.gph, replace)
```

graph combine res1.gph res2.gph

graph export het1.png, replace

Example



■ The residual at each point of job experience is different

Example II

 Using the mksp1 dataset we saw that it's likely there is a hetoskedasticity problem

* Load data webuse mksp1

* Regress educ on income

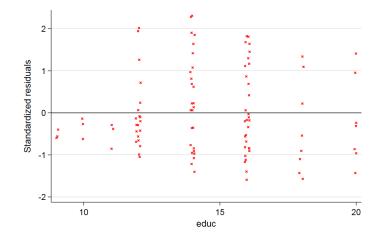
reg income educ

Source	SS	df	MS	Number	of obs	=	100
+-				F(1,	98)	=	10.34
Model	2.7896e+09	1	2.7896e+09	Prob	> F	=	0.0018
Residual	2.6433e+10	98	269719984	R-squ	lared	=	0.0955
+-				Adj H	R-square	d =	0.0862
Total	2.9222e+10	99	295173333	Root	MSE	=	16423
income	Coef.	Std. Err.	t H	?> t	[95%	Conf.	Interval]
+-							
educ	2001.493	622.3571	3.22 (0.002	766.4	461	3236.541
_cons	14098.23	9221.392	1.53 (0.130	-4201.	327	32397.78

predict incres, rstandard

set scheme lean2
scatter incres educ, yline(0) jitter(2) msymbol(x) mcolor(red)

Example



 Some evidence of unequal variances conditional on education (but nothing terrible)

Huber-White robust SEs in Stata

The option vce(robust) or simply robust uses the sandwich estimator

reg income educ, vce(robust)
* same as reg income educ, robust

Linear regress	ion			Number of	obs	=	100
				F(1, 98)		=	13.84
				Prob > F		=	0.0003
				R-squared	1	=	0.0955
				Root MSE		=	16423
1		Robust					
income	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
+							
educ	2001.493	538.0771	3.72	0.000	933.	6971	3069.29
_cons	14098.23	7680.933	1.84	0.069	-1144	. 337	29340.79

- Conclusions won't change but notice that CIs are narrower. SEs went down
- Chose this example on purpose. You always hear that SEs go up, not down, but not always the case (!)

Huber-White robust SEs in Stata

 Compare models; some tests will of course change now that we have different SEs

qui reg income est sto m1	educ	
qui reg income est sto m2	educ, robust	
est table m1 m2	, se stats(N	F)
Variable	m1	m2
	2001.4935	2001.4935
_cons	622.35711 14098.225	
+-		
N F	100 10.342584	100 13.836282

Note that Stata calculates a different F statistics

Huber-White robust SEs in Stata

 Compare models; some tests will of course change now that we have different SEs

qui reg income educ test educ= 900 (1) educ= 900 F(1, 98) = 3.13 Prob > F = 0.0799 qui reg income educ, robust test educ= 900 (1) educ = 900 F(1, 98) = 4.19 Prob > F = 0.0433

■ Since SEs haven changed, tests can change

The good and the bad of the sandwich

- **Good**: We do **not need to know the source** of unequal variance
- Great: The sandwhich estimator is asymptotically unbiased
- Fantastic: The sandwhich estimator is asymptotically unbiased even in the presence of homoskedasticity
- If we often suspect heteroskedasticity and the sandwich estimator is asymptotically valid even in the presence of homoskedasticity, why not always use the robust SEs?
- Well... many researchers add the option robust to every single model for "insurance"
- The bad: The only drawback is that if the homoskedasticity assumption is valid, in smaller samples the robust SEs may be biased
- But... We seldom work with "small" samples anymore so you could just add the robust option by default

Testing for heteroskedasticity

- If small samples and unequal variance in doubt, useful to have a test for heteroskedasticity rather than just assume it
- The null hypothesis is H₀ : var(e|x₁, x₂, ..., x_p) = σ² (that is, homoskedasticity)
- As usual with hypothesis testing, we will look at the data to provide evidence that the variance is not equal conditional on $x_1, x_2, ..., x_p$
- Recall the basic formula of the variance: $var(X) = E[(X - \overline{X})^2] = E[X^2] - (E[X])^2$
- Since $E[\epsilon] = 0$ we can rewrite the null as: $H_0: E(\epsilon^2|x_1, x_2, ..., x_p) = E[\epsilon^2] = \sigma^2$ (think of σ^2 here as a constant)
- If you see the problem this way, it looks a lot easier. We need to figure out if the E[e²] is related to one or more of the explanatory variables (we will use E[ê²]). If not, we can assume homoskedasticity

Testing for heteroskedasticity

- By related, it could be in any functional form, but start with a linear relationship
- The model becomes:

•
$$\epsilon^2 = \gamma_0 + \gamma_1 x_1 + \dots + \gamma_p x_p + u$$

- If we reject *H*₀ : *γ*₀ = *γ*₁ = ... = *γ*_{*p*} = 0 then there is **evidence of unequal variance**
- \blacksquare Of course, we do not observe ϵ^2 so we need to work with $\hat{\epsilon}^2$
- The test is an F-test of the overall significance of the model
- As you probably suspect, Stata has a command for that

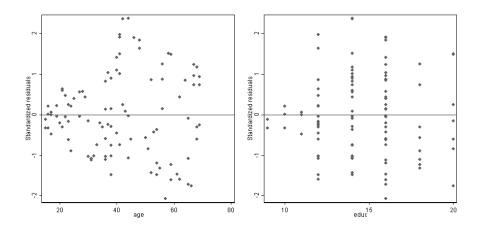
 Let's go back to the income, education, and age dataset and estimate the model

```
income = \beta_0 + \beta_1 educ + \beta_2 age + \epsilon
```

* Get residuals qui reg income age edu predict incress, rstandard

* Combine the plots scatter incress age, yline(0) legend(off) saving(r1.gph, replace) scatter incress educ, yline(0) legend(off) saving(r2.gph, replace)

* Export plot graph combine r1.gph r2.gph, row(1) ysize(10) xsize(20) graph export rall.png, replace



 Clearly, we suspect unequal variance conditional on both age and education

We use the post-estimation command hettest and confirm that we do reject the null:

reg income age edu

Source	SS	df	MS	Number		100
+				F(2, 97	·) =	14.71
Model	6.8005e+09	2	3.4002e+09	Prob >	F =	0.0000
Residual	2.2422e+10	97	231151328	R-squar	ed =	0.2327
+				Adj R-s	quared =	0.2169
Total	2.9222e+10	99	295173333	Root MS	E =	15204
income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
age	440.2441	105.6871	4.17	0.000	230.4845	650.0037
educ	706.8841	654.6241	1.08	0.283 -	592.3636	2006.132
cons	14800.35	8538.327	1.73	0.086	-2145.86	31746.57

estat hettest, rhs

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: age educ

> chi2(2) = 9.86 Prob > chi2 = 0.0072

By hand

- Not exactly the same as the Breusch-Pagan but relatively close (p-value of F test: 0.0012)
- The BP regress agains all regressors, squares, and cross-products (interactions)

<pre>qui reg income * Get square of predict r1, rst gen r12 = r1^2 * Regress</pre>	residuals						
Source	SS	df	MS	Number	of obs	=	100
+-				- F(2,	97)	=	7.51
Model	20.0399037	2	10.0199519	9 Prob	> F	=	0.0009
Residual	129.416801	97	1.33419383	3 R-sq	uared	=	0.1341
+-				- Adj	R-square	ed =	0.1162
Total	149.456705	99	1.50966369	9 Root	MSE	=	1.1551
r12	Coef.	Std. Err.		P> t	[95%	Conf.	Interval]
+-							
age	.0270132	.0080294	3.36	0.001	.0110	0771	.0429494
educ	.0047798	.049734	0.10	0.924	0939	9284	.103488
_cons	188754	.6486853	-0.29	0.772	-1.476	5215	1.098707

As suspected, the problem is age and not so much education

Using Breusch-Pagan

We can also test for age or education separately

qui reg income age edu
estat hettest age
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: age
chi2(1) = 9.86
Prob > chi2 = 0.0017
estat hettest edu
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: educ
chi2(1) = 2.39
Prob > chi2 = 0.1219

Age is the source of heteroskedasticity

Correcting does change SEs but not by a lot

* Regular qui reg income age edu est sto reg

* Robust qui reg income age edu, robust est sto rob

* Compare

est table reg rob, se p stats(N F)

Variable	reg	rob
age	440.24407 105.68708 0.0001	440.24407 94.815869 0.0000
educ 	706.88408 654.62413 0.2829	706.88408 612.81005 0.2515
_cons 	14800.355 8538.3265 0.0862	14800.355 7245.2375 0.0438
N F	100 14.71002	100 21.294124
		legend: b/se/p

A catch 22?

- Remember the big picture. The sandwich estimator is asymptotically valid even if homokedastic variance so with large enough samples we are safe using the robust option all the time
- With small samples, we would like to test for the heteroskedastic errors
- BUT, we may not have enough power to detect heteroskedasticy with smaller sample
- We could reject the null when the null is true (Type II error)
- Not a clear solution

Back to transformations

Remember that taking the log(y) tends to help with OLS assumptions? Could it fix the heteroskedastic problem? Yep, mostly

reg lincome age edu lincome | Coef. Std. Err. t P>|t| [95% Conf. Interval] ______ age | .0093932 .0024094 3.90 0.000 .0046113 .0141752 educ 0217054 .0149237 1.45 0.149 -.007914 .0513248 _cons | 9.895059 .1946512 50.83 0.000 9.50873 10.28139 _____ estat hettest. rhs Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: age educ chi2(2) = 5.00 Prob > chi2 = 0.0821estat hettest age chi2(1) = 4.98 Prob > chi2 = 0.0256estat hettest educ chi2(1) = 0.87 Prob > chi2 = 0.3500

Back to transformations

Since taking the log has helped with heteroskedasticity, the original and the robust model should be similar

* Log income, no robust qui reg lincome age edu est sto lm1

* Log income, robust qui reg lincome age edu, robust est sto lm1rob

* Compare

est table lm1 lm1rob, se p stats(N F)

Variable	1m1	lm1rob			
age	.00939325	.00939325			
Ŭ.	.00240939	.00215669			
	0.0002	0.0000			
educ	.02170542	.02170542			
	.01492369	.01349306			
	0.1491	0.1109			
_cons	9.8950586	9.8950586			
	.1946512	.16247044			
	0.0000	0.0000			
	+				
N	100	100			
F	14.651729	21.599741			
		legend: b/se/p			

Alternative: White test

- An alternative test that is popular is the White test
- It does use more degrees of freedom. The logic is similar to the other test
- White showed that the errors are homokedastic if ϵ^2 is uncorrelated with all the covariates, their squares, and cross products
- With three covariates, the White test will use 9 predictors rather than 3
- In my opinion, more of a Catch 22
- Easy to implement in Stata (of course)

White

White test in Stata

Cameron & Trivedi's decomposition of IM-test

Source	1	chi2	df	р
Heteroskedasticity Skewness Kurtosis	 	23.77 3.77 2.29	5 2 1	0.0002 0.1518 0.1302
Total	+	29.83	8	0.0002

■ Same conclusion, we reject the null

Big picture

- With large samples, robust SEs buy you insurance but with smaller samples it would be a good idea to test for heteroskedasticity
- Of course, with small samples, the power of the heteroskedasticity test is itself compromised
- No hard rules. Researchers follow different customs; some always add the robust option (I don't)
- Careful with likelihood ratio tests in the presence of heteroskedasticity
- Stick to robust F tests to compare nested model (use the test command in Stata)

Summary

- Robust SEs are asymptotically valid even if no heteroskedasticity
- Always suspect unequal variance; very common
- Taking the log transformation may help
- Next class, dealing with unequal variance when we know the source: weighted models
- Weighted models for dealing with heteroskedasticity is sort of old fashioned. I do want to cover weighted models because they are used a lot in survey data analysis and lately in propensity scores