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Outline

Logistic regression once again

Parameter interpretation

Log odds, odds ratios, probability scale

Goodness of fit

Marginal effects preview
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Review of MLE

At the risk of being repetitive, recall the log-likelihood of the logistic
model:

lnL(p) =
∑n

i=1 yi ln(p) +
∑n

i=1(1− yi )ln(1− p)

When we use the logistic transformation to ensure that p is bounded

between 0 and 1, we plug-in p = eβ0+β1X1+···+βpXp

1+eβ0+β1X1+···+βpXp

When estimating the betas, the estimated model is in the log-odds
scale:

log( pi
1−Pi

) = β0 + β1X1 + · · ·+ βpXp
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Latent variable approach
Suppose that there is a latent (unobserved) and continuous variable
y∗ that take values from −∞ to +∞
We also assume that the latent variable is a function of covariates X.
For simplicity, let’s just assume a linear relationship and just one
covariate: y∗i = β0 + β1xi + u
u plays the same role as ε in the linear model: a source of random
error
We do not observe the latent variable y , we only observe if an event
happens or not but whether the event happens depends on the value
of the latent variable. We use yi to denote the observed variable,
which we assume is a 1 or 0 variable
If yi∗ > 0 then yi = 0. If yi∗ ≤ 0 then yi = 1. Note that in this case
0 is a threshold
Think of y∗ as intelligence and y is whether a person answers a
question correctly or not. Or more relevant to something like it’s done
in economics, y∗ is preference over some good and y = 1 if a person
buys the good
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Latent variable approach

Because of the way we set up the problem, we can write the
probability of y = 1 conditional on the covariate x as:

P(y = 1|x) = P(y∗ > 0|x)

Since we assumed that y∗i = β0 + β1xi + u the above equation
becomes

P(y = 1|x) = P(β0 + β1xi + u > 0|x) = P(u < [β0 + β1xi ]|X ) =
F ([β0 + β1xi ]|x)

From the above equation you get the insight that the probability of
observing the y = 1 depends on the distribution of u and we can
calculate it if you know the cumulative distribution function F ()

This one is not so obvious but it’s apparent that one must make a
strong assumption about the underlying form of y∗ to be able to
solve the problem

Also note that P(y = 0|x) = 1− P(y = 1|x)
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Latent variable approach

In econometrics this type of models are often called index function
models

There are two assumptions about u that are used: u distributes either
standard logistic or standard normal

Both distributions have a mean of 0 and constant variance. In the
standard logistic the variance var(u) = π2

3 . In the standard normal
var(u) = 1

The idea of fixing the variance is not that trivial in the sense that if
we don’t fix it, then we can’t estimate it because we only observe a 0
or 1 and the probability of 1 depends on the sign on y∗ but not the
scale (variance)

In other words, we don’t have information to estimate var(u) yet we
lose nothing by fixing it because P(y = 1|x), and therefore,
P(y = 0|x), does not depend on var(u)
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Latent variable approach

Remember that the cumulative distribution function (cdf) gives
you P(X < a). Remember too that to get the probability you need to
integrate the density f(t) from −∞ to a:

∫ a
−∞ f (t)dt

If we assume standard normal cdf, our model then becomes

P(y = 1|x) =
∫ β0+β1x
−∞

1
2π e

(− t2

2
)dt

And that’s the probit model. Note that because we use the cdf, the
probability will obviously be constrained between 0 and 1 because,
well, it’s a cdf

If we assume that u distributes standard logistic then our model
becomes P(y = 1|x) = eβ0+β1x

1+eβ0+β1x

Remember that there are two different concepts: logistic response
function and logistic distribution. The standard logistic cdf
happens to have the above formula (the pdf is different)
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Estimation

Estimation is straighforward with MLE. We did it for the logistic
model already

For probit, the likelihood is just like writing P(y = 1|x) above
because that’s the probability of seeing the data. We need to multiply
n times and also consider that the probability of 0 is 1− P(y = 1|x).
If we take the log, it’s a sum

This is often a source of confusion but remember that the likelihood
function is the probability of seeing the data given assumptions about
the distribution of the data

So what is the probability of observing a data point y = 1? It’s

P(y = 1|x) =
∫ β0+β1x
−∞

1
2π e

(− t2

2
)dt

What is the probability of observing a data point y = 0? It’s
P(y = 0|x) = 1− P(y = 1|x)
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Estimation

Sometimes is easier to see how you could program Stata to maximize
the log-likelihood

I have more examples on my site
http://tinyurl.com/mcperraillon

Note below that writing the likelihood makes it obvious that the
betas are shifts in the standard normal cdf scale

program probit_lf

version 12

args todo b lnf

tempvar xb lj

mleval ‘xb’ = ‘b’

* latent variable assumed cumm standard normal

qui gen double ‘lj’ = normal( ‘xb’) if $ML_y1 == 1

qui replace ‘lj’ = normal(-‘xb’) if $ML_y1 == 0

qui mlsum ‘lnf’ = ln(‘lj’)

end
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Digression

Assuming standard normal cdf or logistic are not the only options

There is the complementary log-log model commonly used in discrete
time survival because the exponent of coefficients are hazard rates

Or the Gumbel model used to model extreme values

Or the Burr model. Or the Scobit model

Statistics and econometrics are large fields... Papers must be written,
dissertations must be completed

Sometimes a proposed new method goes to the Journal Article
Graveyard. Sometimes they are resurrected 30 years later when
somebody discovers that they are perfect for a particular application

So many ideas and clever people out there...

See Greene (2018) for the gory details
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Example

Women’s labor force participation (inlf); main predictor is ”extra”
money in family

bcuse mroz, clear

inlf =1 if in labor force, 1975

nwifeinc (faminc - wage*hours)/1000

educ years of schooling

exper actual labor mkt exper

age woman’s age in yrs

kidslt6 # kids < 6 years

kidsge6 # kids 6-18

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

inlf | 753 .5683931 .4956295 0 1

nwifeinc | 753 20.12896 11.6348 -.0290575 96

educ | 753 12.28685 2.280246 5 17

exper | 753 10.63081 8.06913 0 45

age | 753 42.53785 8.072574 30 60

kidslt6 | 753 .2377158 .523959 0 3

kidsge6 | 753 1.353254 1.319874 0 8
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Labor force participation
The probability of working is decreasing as a function of ”extra”
income

lowess inlf nwifeinc, gen(lflow) nograph

scatter inlf nwifeinc, jitter(5) msize(small) || line lflow nwifeinc, sort ///

legend(off) saving(lblow.gph, replace)

graph export lblow.png, replace
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Writing down the model

We want to estimate the following model:

P(inlfi = 1|nwifeinci ) = Λ(β0 + β1nwifeinci )

By convention (in economics and health economics), when we write
capital lambda, Λ(), we imply a logistic model (Λ is not a non-linear
function). When we write phi, φ(), we imply a probit model

As I told you last class, write the logistic model this way:

log( inlfi
1−inlfi ) = β0 + β1nwifeinci

Or

logit(inlfi ) = β0 + β1nwifeinci

Again, write it like this: log( inlfi
1−inlfi ) = β0 + β1nwifeinci because this

will match Stata’s (or any other statistical package) output.
Remember, we are not directly estimating P(inlfi = 1|nwifeinci )

13



On pet peeves...

For the love of everything you hold dear, please do not write logistic
of probit models like this. Please, please, please, don’t do this

P(y = 1|x) = β0 + β1x

P(y = 1|x) = β0 + β1x + ε

P(y) = β0 + β1x + ε

logit(y) = β0 + β1x + ε

log( p
1−p ) = β0 + β1x + ε

P(y = 1|x) = f (β0 + β1x1 + ε)

Worse: p = β0 + β1x or p = β0 + β1x + ε
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Estimating the model

So, we will estimate log( inlfi
1−inlfi ) = β0 + β1nwifeinci

logit inlf nwifeinc, nolog

Logistic regression Number of obs = 753

LR chi2(1) = 10.44

Prob > chi2 = 0.0012

Log likelihood = -509.65435 Pseudo R2 = 0.0101

------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0207569 .0065907 -3.15 0.002 -.0336744 -.0078394

_cons | .6946059 .1521569 4.57 0.000 .396384 .9928279

------------------------------------------------------------------------------

A one thousand increase in “extra” income decreases the log-odds of
participating in the labor force by 0.021. And it’s statistically
significant (p-value = 0.002). Same Wald test as before:
−.0207569/.0065907 = −3.1494227. The difference is that the it’s
not t-student distributed but normally distributed
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Overall significance

The χ2 (chi-square) test of the overall significance should look
familiar. It compares the current model to the null model (without
covariates); the null hypothesis is that all the cofficients in current
model are zero

It’s the likelihood ratio test that we have seen before; the equivalent
of ANOVA:

* LRT

qui logit inlf nwifeinc, nolog

est sto full

qui logit inlf, nolog

est sto redu

lrtest full redu

Likelihood-ratio test LR chi2(1) = 10.44

(Assumption: redu nested in full) Prob > chi2 = 0.0012
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What about that Pseudo R2?

We can’t partition the variance into explained and unexplained as
before so we don’t have a nice R2 that goes from 0 to 1

But one way to come up with a measure of fit is to use the (log)
likelihood function to compare the current model to the model
without any explanatory variable (the null model)

The formula is: 1− llcm
llnul

, where llcm is the log-likelihood of the current
model and llnul is the log-likelihood of the null model

If the current model is as good as the null model, then llcm
llnul

is going to

close to 1 and the pseudo − R2 is going to be close to zero

In other words, adding variables doesn’t improve the likelihood. If
adding variables improves the likelihood, then the pseudo R2 will be
greater than zero
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Pseudo-R2

Replicate Pseudo R2

qui logit inlf nwifeinc, nolog

scalar ll_cm = e(ll)

qui logit inlf, nolog

scalar ll_n = e(ll)

di 1 - (ll_cm/ll_n)

.0101362

di "cm: " ll_cm " " "null: " ll_n " " "(ll_cm/ll_n): " (ll_cm/ll_n)

cm: -509.65435 null: -514.8732 (ll_cm/ll_n): .9898638

Psuedo R2 is not a measure of how good the model is at prediction;
just how better it fits compared to null model. I don’t think that
calling it pseudo R2 is a good idea

Big picture: comparing the log-likelihood of models is a way of
comparing goodness of fit. If nested, we have the a test (LRT); if not
nested, we have BIC or AIC
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Not the only pseudo R2?

Stata uses one version of pseudo R2 but there are plenty more. Other
software may use different metrics

Long and Freese (2014) have a laundry list of different pseudo R2

(it’s an excellent book, by the way)

There is the McFadden one, MLE, Cragg and Uhler (also known as
Nagelkerke), Efron’s, Tjur’s... (page 127)

In any case, none of them have the same meaning as the R2 in linear
regression

In particular, they don’t mean that predictions are good. Recall
that in linear regression the R2 is also the square of the correlation
between observed and predicted values

See, context matters a lot
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Let’s try a different predictor

We will estimate log( inlfi
1−inlfi ) = β0 + β1hspi , where hsp if education

> 12

gen hsp = 0

replace hsp = 1 if educ > 12 & educ ~= .

logit inlf hsp, nolog

Logistic regression Number of obs = 753

LR chi2(1) = 15.08

Prob > chi2 = 0.0001

Log likelihood = -507.33524 Pseudo R2 = 0.0146

------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsp | .6504074 .1704773 3.82 0.000 .3162781 .9845368

_cons | .0998982 .086094 1.16 0.246 -.068843 .2686393

------------------------------------------------------------------------------

The log-odds of entering the labor force is 0.65 higher for those with
more than high school education compared to those with high-school
completed or less than high-school
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Odds ratios

Let’s do our usual math to make sense of coefficients. We just
estimated the model log( inlfi

1−inlfi ) = β0 + β1hspi

For those with hsp = 1, the model is log(
inlfhsp

1−inlfhsp ) = β0 + β1

For those with hsp = 0, the model is log(
inlfnohsp

1−inlfnohsp ) = β0

The difference of the two is log(
inlfhsp

1−inlfhsp )− log(
inlfnohsp

1−inlfnohsp ) = β1

Applying the rules of logs: log(

inlfhsp
1−inlfhsp
inlfnohsp

1−inlfnohsp

) = β1

Taking e():

inlfhsp
1−inlfhsp
inlfnohsp

1−inlfnohsp

= eβ1
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Odds ratios

inlfhsp
1−inlfhsp
inlfnohsp

1−inlfnohsp

= eβ1

And that’s the (in)famous odds-ratio

In our example, e .6504074 = 1.92. So the odds of entering the labor
force is almost twice as high for those with more than high school
education compare to those without

That’s the way careful reporters would report this finding. And it’s
correct. The problem is that we would then interpret this as saying
that the probability of entering the labor force is twice as high for
those with more than high school

That interpretation is wrong. A ratio of odds is more often than
not far away from the ratio of probabilities
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Odds ratios are NOT relative risks or relative probabilities

One quick way to see this is by doing some algebra

Changing the notation to make it easier:
PA

1−PA
PB

1−PB

= eβ1

After some simple algebra:
PA
PB

= 1−PA
1−PB

eβ1

Only when rare events (both PA and PB are small) or the ratio close
to 1 are odds ratios close to relative probabilities ( 1−PA

1−PB
will be close

to 1)

For a more epi explanation, see
http://www.mdedge.com/jfponline/article/65515/

relative-risks-and-odds-ratios-whats-difference
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Relative probabilities

With only a dummy variable as predictor we can very easily calculate
the probabilities

Remember, we are modeling log( p
1−p ) = β0 + β1X . We also know

that we can solve for p:

p = eβ0+β1X

1+eβ0+β1X

So we can calculate the probability for those with more than high
school education and the probability for those with less
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Probabilities, odds, relative risks, differences (pay
attention!!!)
qui logit inlf hsp, nolog

* hsp = 1

di exp(_b[_cons] + _b[hsp]) / (1 + exp(_b[_cons] + _b[hsp]))

.67924528

* hsp = 0

di exp(_b[_cons]) / (1 + exp(_b[_cons]))

.52495379

* Odds

di (.67924528/(1-.67924528)) / (.52495379/(1-.52495379))

1.9163214

* Relative probabilities

di .67924528/ .52495379

1.2939144

* Difference

di .67924528 - .52495379

.15429149

Odds ratios are confusing, misleading, evil: Before, we said that the
odds were doubled, or 100% higher. Now in, the scale that matters,
we say that the probability is only 30% higher. Or 15% percent
points different
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Using GLM

glm inlf hsp, family(binomial) link(logit) nolog

Generalized linear models No. of obs = 753

Optimization : ML Residual df = 751

Scale parameter = 1

Deviance = 1014.670487 (1/df) Deviance = 1.351093

Pearson = 753 (1/df) Pearson = 1.002663

Variance function: V(u) = u*(1-u) [Bernoulli]

Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.352816

Log likelihood = -507.3352435 BIC = -3960.002

------------------------------------------------------------------------------

| OIM

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsp | .6504074 .1704773 3.82 0.000 .3162781 .9845368

_cons | .0998982 .086094 1.16 0.246 -.068843 .2686393

------------------------------------------------------------------------------

Same coefficients, in log odds scale. Link is logit
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Using GLM to get relative risk
glm inlf hsp, family(binomial) link(log) nolog

Generalized linear models No. of obs = 753

Optimization : ML Residual df = 751

Scale parameter = 1

Deviance = 1014.670487 (1/df) Deviance = 1.351093

Pearson = 753 (1/df) Pearson = 1.002663

Variance function: V(u) = u*(1-u) [Bernoulli]

Link function : g(u) = ln(u) [Log]

AIC = 1.352816

Log likelihood = -507.3352435 BIC = -3960.002

------------------------------------------------------------------------------

| OIM

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsp | .2576721 .0624513 4.13 0.000 .1352698 .3800743

_cons | -.644445 .0408986 -15.76 0.000 -.7246049 -.5642852

------------------------------------------------------------------------------

. di exp(0.2576721)

1.2939145

Note that link is now log, not logit. The exponent of the coefficient
is the relative risk. Check it matches our result by “hand,” 1.29. No
that the value of the log-likelihood is the same, SEs are different!
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Why does it work?

Because estimated model is now log(pi ) = β1 + β1hspi

Note that we are not taking the log of the outcome variable. We are
still assuming that the outcome comes from a Bernoulli/Binomial
distribution; in the likelihood p = e(β1+β1hspi )

So the difference between those with hsp = 1 and those with hsp = 0
is log(phsp)− log(pnohsp) = β1

We can rewrite as log(
phsp
pnohsp

) = β1. Take exponent on both sides and

we have
phsp
pnohsp

= eβ1

Neat trick; GLM keeps on giving but for inference stick to logistic

28



Big picture

A ratio of odds is hard to interpret at best. At worse, it is misleading

We tend to think of them as a ratio of probabilities, but they are NOT

Often there is little resemblance between relative probabilities and
odds ratios (unless events are rare)

They tend to be often misreported and confusing; same with ratio of
probabilities

For example, it sounds bad that event A is 10 times more likely to
make you sick than event B, but that could be because PA = 0.001
and PB = 0.0001; their difference is 0.0009

My personal opinion: A ratio of probabilities can be confusing, a
ratio of odds is EVIL
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Back to the continuous case

Let’s go back to the model log( inlfi
1−inlfi ) = β0 + β1nwifeinci

We can also take exp(β1). In this case, exp(−.0207569) = .97945704

A thousand dollars of extra income decreases the odds of
participating in the labor force by a factor of 0.98

Again, same issue. We can also solve for p or inlf in this case but not
as easy as before because nwifeinc is continous

We could take, as with the linear model, the derivative of p with
respect to nwifeinc, but we know that it’s non-linear so there is not a
single effect; it depends on the values of nwifeinc

Solution: We will do it numerically
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Average prediction sketch

We will do something that is conceptually very simple to numerically
get the derivative

1 Estimate the model
2 For each observation, calculate predictions in the probability scale
3 Increase the nwifeinc by a “small” amount and calculate predictions

again
4 Calculate the the change in the two predictions as a fraction of the

change in nwifeinc. In other words, calculate ∆Y
∆X , which is the

definition of the derivative
5 Take the average of the change in previous step across observations

That’s it
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Numerical derivative

preserve

qui logit inlf nwifeinc, nolog

predict inlf_0 if e(sample)

replace nwifeinc = nwifeinc + 0.011

predict inlf_1 if e(sample)

gen dydx = (inlf_1 - inlf_0) / 0.011

sum dydx

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 753 -.0050217 .0001554 -.005191 -.0034977

A small increase in extra income decreases the probability of entering
the labor force by 0.005
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That’s what Stata calls marginal effects

qui logit inlf nwifeinc, nolog

margins, dydx(nwifeinc)

Average marginal effects Number of obs = 753

Model VCE : OIM

Expression : Pr(inlf), predict()

dy/dx w.r.t. : nwifeinc

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0050217 .0015533 -3.23 0.001 -.008066 -.0019773

------------------------------------------------------------------------------

See, piece of cake! We will cover in detail exactly how Stata does
it (not same as my code)
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Margins for indicator variables

qui logit inlf i.hsp, nolog

margin, dydx(hsp)

Conditional marginal effects Number of obs = 753

Model VCE : OIM

Expression : Pr(inlf), predict()

dy/dx w.r.t. : 1.hsp

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.hsp | .1542915 .038583 4.00 0.000 .0786701 .2299128

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Same as what we found before doing it by hand. If we have
covariates, we need to hold them constant at some value

Always use factor variable notation with margins to avoid mistakes
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Please be fearful of the margin command; it’s healthy
margin, dydx(hsp)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.hsp | .1542915 .038583 4.00 0.000 .0786701 .2299128

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

margin i.hsp

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsp |

0 | .5249538 .0214699 24.45 0.000 .4828736 .567034

1 | .6792453 .0320577 21.19 0.000 .6164134 .7420772

------------------------------------------------------------------------------

. margin

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | .5683931 .0178717 31.80 0.000 .5333652 .603421

------------------------------------------------------------------------------

Small syntax changes make a big difference. The third version is
just the average prediction; same as observed proportion
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Note on predictions and Stata and odds ratios

By default, Stata calculates predictions in the probability scale

You can also request predictions in the log-odds or logit scale

By default, Stata shows you the coefficients in the estimation scale
(that is, log-odds)

You can also request coefficients in the odds-ration scale

But since you know they are evil, don’t do it
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Sata things
qui logit inlf i.hsp nwifeinc, nolog

* Default, probability scale

predict hatp if e(sample)

(option pr assumed; Pr(inlf))

* Logit scale

predict hatp_l, xb

* Request odds ratios

logit inlf i.hsp nwifeinc, or nolog

------------------------------------------------------------------------------

inlf | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.hsp | 2.461153 .4532018 4.89 0.000 1.715523 3.530861

nwifeinc | .9689898 .0069954 -4.36 0.000 .9553756 .9827981

_cons | 1.95093 .303736 4.29 0.000 1.437872 2.647058

------------------------------------------------------------------------------

* That 2.46? 0.20 in probability scale, 39% more in relative probability:

margins hsp

-----------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsp |

0 | .5100289 .0213527 23.89 0.000 .4681784 .5518794

1 | .7137439 .0306774 23.27 0.000 .6536173 .7738705

------------------------------------------------------------------------------

di .7137439 /.5100289

1.3994185

di .7137439 -.5100289

.203715
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Let’s use probit now

probit inlf i.hsp nwifeinc

Iteration 0: log likelihood = -514.8732

Iteration 1: log likelihood = -496.87387

Iteration 2: log likelihood = -496.81531

Iteration 3: log likelihood = -496.81531

Probit regression Number of obs = 753

LR chi2(2) = 36.12

Prob > chi2 = 0.0000

Log likelihood = -496.81531 Pseudo R2 = 0.0351

------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.hsp | .5585346 .1118311 4.99 0.000 .3393497 .7777195

nwifeinc | -.0194555 .0043249 -4.50 0.000 -.0279322 -.0109787

_cons | .4140307 .0947847 4.37 0.000 .228256 .5998053

------------------------------------------------------------------------------

Note that pseudo R2 is close to logit, 0.0349

No way to interpret coefficients other than with marginal effects. But
how do we predict using probit?
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Prediction in Probit models

If coefficients are shifts in the cumulative standard, how do we make
predictions?

Well, calculating the probability given the index function

Similar to using the inverse of the logistic response function

probit inlf i.hsp nwifeinc

* "By hand"

gen phat2 = normal(_b[_cons] + _b[1.hsp]*hsp + _b[nwifeinc]*nwifeinc)

* Using predict

predict phatprobit

sum phat phatprobit

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

phat | 753 .5688501 .1071053 .0971352 .8347558

phatprobit | 753 .5688501 .1071053 .0971352 .8347558
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Prediction in Probit models

You can get some additional insight comparing the predicted index
function β̂0 + β̂1x1 + · · ·+ β̂pxp to the predicted probability

In Stata, you can use the xb option in the predict command. Below, I
do it by hand

If the index function is postive, then predicted probabilities are greater
than 0.5. Why, because that’s how we define the threshold...

* Probability

gen phat2 = normal(_b[_cons] + _b[1.hsp]*hsp + _b[nwifeinc]*nwifeinc)

* Index function

gen xb = _b[_cons] + _b[1.hsp]*hsp + _b[nwifeinc]*nwifeinc

* Compare them

sum phat2 if xb >0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

phat2 | 590 .6066335 .0807844 .5004731 .8347558

sum phat2 if xb <0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

phat2 | 163 .4320882 .0741921 .0971352 .4998522
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Summary

Main difficulty with logistic and probit models is to interpret
parameters

We estimate models in log-odds scale, we can easily convert
coefficients into odds ratios but we really care about probabilities
because a ratio of odds is not that informative (they are EVIL)

All effects in the probability scale are nonlinear in both models
so the effect one variable depends on the value of that variable
and the value of all other variables in the model

We can use numerical “derivatives” to come up with average
predicted differences, what economists and Stata call marginal effects

With more covariates, we just add our usual “holding other factors
constant” or “taking into account other factors”

We will do more of that next class
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