Cost-Effectiveness Analysis (CEA)

Marcelo Coca Perraillon

University of Colorado Anschutz Medical Campus

Cost-Effectiveness Analysis HSMP 6609 2020

Outline

- Focus on the denominator of ICER: measuring effectiveness/outcomes
- A brief detour on measuring health
- The cost-effectiveness plane
- How to use the ICER:
 - Distributing a budget
 - Interpreting the ICER and the notion of "thresholds"
- Calculating ICER with more than 1 alternative program

Big picture

- The last three lectures were about the cost side of EEs and the ICER
- One key message was that there are three guiding principles for deciding which costs to include: 1) Perspective, 2) Time horizon, and 3) Relevance of costs for the decision
- (Department of Homework Corrections: Overhead costs are not sunk costs although under certain circumstances they could be)
- Today we will talk about talk the effectiveness side and how both sides fit together
- When we talk about "effectiveness" we are really talking about health outcomes
- Therefore, we have to talk about how health is measured

Department of Definitions

- If outcomes are measured in "natural units," the old terminology was to call these type of studies cost-effectiveness analysis (CEA)
- In this terminology, "life years gained" are natural units
- If quality of life are used to adjust life years, then it was called cost-utility analysis (CUA)
- We also learned that both are also called cost-effectiveness analysis. Blame the older edition of your textbook for creating confusion
- I don't mind which one you use, but I need you to know about it because you may get confused when reading articles
- So...

Health measurement terms

- There are many ways of measuring health and many ways of classifying measurements of health
- For the **purpose of this class**, we will use these terms:
 - **1** Natural units: cases detected, cases averted, episode-free days, events (strokes, MIs), blood pressure levels, *years of life gained*
 - 2 Generic or disease-specific scales: Hamilton depression scale, SF-6, SF-12 or SF-36
 - 3 Preference based scales: EQ-5D, SF-6D
- Note that natural units or preference-based scales can be generic or specific
- Generic scales measure "general" health status; disease specific scales measure health functioning considering factor that are specific to certain health conditions

Intermediate versus final outcomes

- Outcomes could also be classified as intermediate outcomes (cholesterol, blood pressure) or final outcomes (mortality, MI, strokes)
- Intermediate outcomes: Defined as an important/critical outcome that is related to another more important or final outcome
- The intermediate outcome is in the pathway to the final outcome
- Final outcomes: The outcome of interest or the end results in the pathway
- Think of diabetes: A1C (correlated with previous 3 months of glucose level) versus mortality or an amputation. Cholesterol levels and myocardial infarction
- The other way to think about intermediate outcome: **proxy** of what you want to measure. For example, TSH levels versus T3/T4 hormones

Helpful classification

■ From Chapter 5 of your textbook

Big picture

- Any of the measures of health could be the measure of effectiveness in an economic evaluation
- $\blacksquare ICER = \frac{C_2 C_1}{E_2 E_1}$
- In the above equation, *E* could be CD4 counts, cholesterol, cases detected, SF-36 scores, life years, life years adjusted for quality
- The ICER would be in the units [§]/_E. So for example \$1,000 per case detected, or per life year or per cholesterol unit or quality adjusted life years
- But there is a significant problem with using different metrics for outcomes

Comparability

- Silly example to illustrate the problem. Since we are in Colorado: beer versus ski boots
- You do your mental calculation of the value of craft beer vs Coors light. Say \$3 versus \$6. So incremental cost is \$3. Because you are such a beer connoisseur you have your own quality scale (or maybe there is an App for that?). So in that scale the incremental quality is 1.5 units. ICER is then \$3 / 1.5 = \$2 per unit of beer quality
- Now boots. New versus old model. About \$300 price difference. This time you have another scale that takes into account pain and lightness of the boot. Your ICER is $\frac{$300}{50} = 60 per unit of boot quality
- Can you make a statement about the relative cost-effectiveness of craft beer versus a new boot? Of curse not. You would need to come up with beer quality to boot quality comparison

So how do we choose a measure of effectiveness?

- To do EEs, we want to use a measure of health that is relevant and important because costs will be compared to to this measure to make decisions about resource allocation
- A consensus measure is for sure years of life gained. One goal of health care is to extend life. Or put it differently, to extend life by avoiding "preventable" deaths
- (Trivia: Upper limit of life years in both the bible and science seems to be 120 years)
- On the other hand, **quality** and not just quantity is important
- Both years of life gained and quality-adjusted years of life gained (QALYs) are common measures of benefits in EEs
- In part because of comparability concerns we want to use a common metric

The importance of choosing a measure of benefit

- It is this search for comparability that has driven the field towards using QALYs
- But this complicates CEAs because often data on effectiveness cannot be translated easily into years of life gained
- Example: we conduct a screening program for diabetes or celiac in children. What can we measure? In about, say, two years, cases detected? (Yes) Complications averted? (Not all of them)
- Mostly **intermediate** outcomes → need to somehow simulate final outcomes
- This, in turn, has increased the use of modeling (trees, Markov models, microsimulation) to link intermediate and final outcomes (at the cost of adding more layers of assumptions)

Maximizing life-years gained (or any other outcome)

- Suppose we (society) wanted to maximize years of life gained given a budget constraint. And suppose that you have used life years as the measure of effectiveness for every possible intervention
- In other words, you have a fixed budget that you want to allocate among different alternatives in the most efficient way so as to maximize the unit of outcome, life years
- Theory tells us that we should order the alternatives from lowest ICER to highest
- Then, do the alternative with lowest ICER. If there is money left, do the alternative with second lowest ICER, and so on until you there is no more money left
- That procedure maximizes life years gained given your budget

Intermediate versus final outcomes

- Still, studies often use outcomes other than QALYs
- Some guidelines about intermediate versus final outcomes:
 - **1** Make case for intermediate outcome (i.e. argue it is important)
 - 2 Make sure that there is a strong link between intermediate and final outcome
 - 3 Ensure that any uncertainty surrounding the link is taken into account
- Example: In a screening study, cases detected is fairly relevant. But is there a strong link between cases detected and mortality or say, MI (final outcome)?
- But keep in mind that the problem remains: you can only compare studies if they use the same unit of outcome

Big picture again

- We are going to cover more about measuring quality of life or what economics call preferences over health states soon
- In doing so, we will briefly talk about some instruments like the SF-12
- But this is all for now about *measuring* health outcomes
- So we have the costs (last two classes) and we, sort of, have a measure of health outcomes after my super brief discussion of health measurement
- How do they fit together?

Incremental cost-effectiveness ratio (ICER)

- Once we have a measure of benefit we can calculate the ICER between alternatives
- As we saw before:

$$ICER = rac{C_A - C_B}{E_A - E_B} = rac{\Delta C}{\Delta E}$$

 C_i and E_i , where $i \in \{A, B\}$, are the costs and benefit measure of alternative i

- The result is the incremental cost per unit of effectiveness
- For example, one study found that the cost of counseling per smoking quit was \$1,300. So \$1,300 per case averted

the concept of "dominance"

- Suppose we calculate an ICER comparing a new intervention (B) to usual care (A)
- Easy cases:
 - **1** B is more expensive and less effective (prefer A) \rightarrow A dominates B
 - **2** B is less expensive and more effective (prefer B) \rightarrow B dominates A
- The pure dominance cases are simple decisions
- Not-so-easy cases:
 - B is more expensive and more effective (by far the most common case with new "technology")
 - 2 B is both less expensive and less effective (we don't like interventions that are less effective; we don't do EEs of them)

Cost-effectiveness plane

- The y-axis is the numerator of ICER; the x-axis is the denominator
- Note that the ICER is the slope of the line connecting O with A
- If we use a threshold to determine cost effectiveness, the threshold is also a line (red one here)
- Note signs: ICER is a ratio, so -/+ = and -/- = +

Several alternatives

- Now for something somewhat different: several alternatives
- We have been considering only two alternatives in most examples although we talked about screening programs (with multiple intensities)
- The cost-effectiveness plane can be a useful tool to think about another type of dominance: "extended dominance"
- Extended dominance comes up with multiple alternatives. Not the most common situation but worth it going over it

Example: Dealing with several alternatives

Intervention	Cost (\$)	Effect (years)
1	\$350	20
2	\$1,500	27
3	\$3,500	35

- **1** Organize interventions from least costly to most costly
- 2 Organize interventions in increasing order of effectiveness

Example

Intervention	Cost (\$)	Effect (years)	ICER
1	\$350	20	-
2	\$1,500	27	\$164
3	\$3,500	35	\$250

$$ICER_{2,1} = \frac{(1,500 - 350)}{27 - 20} = \$164$$
$$CER_{3,2} = \frac{(3,500 - 1,500)}{35 - 27} = \$250$$

Which one do we choose? It depends on how much the decision maker is willing to pay per year of life gained

I

• Note how comparisons are so important. If we knew that Intervention 2 is not viable, the $ICER_{3,1} = 210$ per life year

A more complex example from Drummond et al (2005)

Table 5.4 Cost per patient (C) and effectiveness per patient (E) for the available alternatives in each of three treatment strategies. (There are 1000 patients to be treated in each group.)

Treatment strategy I		Treatment strategy			Treatment strategy III			
Alternative	С	Ε	Alternative	С	E	Alternative	С	E
A	100	10	F	200	12	К	100	5
В	200	14	G	400	16	L	200	8
C	300	16	Н	550	18	М	300	12
D	400	19						
E	500	20						

From Karlsson and Johannesson (1996).

- Three different interventions: I, II, III
- Each intervention can be deliver in varying degrees of intensity
- There is a "do-nothing" (called O) alternative with \$0 cost and 0 benefits

Treatment strategy I			
Alternative	С	Ε	
A	100	10	
В	200	14	
C	300	16	
D	400	19	
E	500	20	

$$\begin{split} & ICER_{A,O} = (100-0)/(10-0) = \$10 \\ & ICER_{B,A} = (200-100)/(14-10) = \$25 \\ & ICER_{C,B} = (300-200)/(16-14) = \$50 \\ & ICER_{D,C} = (400-300)/(19-16) = \$33 \\ & ICER_{E,D} = (500-400)/(20-19) = \$100 \end{split}$$

Treatment strategy I					
Alternative	$\Delta \mathbf{C}$	ΔΕ	$\Delta C / \Delta E$		
A	100	10	10		
В	100	4	25		
C	100	2	50		
D	100	З	33		
E	100	1	100		

• Note that that $ICER_{B,A} = $50 > ICER_{D,C} = 33

- ICER is the slope of the line
- This graph is for the 1,000 hypothetical patients
- C is a bit peculiar. You could draw a line from B to D that passes below point C

•
$$ICER_{D,B} = (400 - 200)/(19 - 14) = 40$$

- In other words, we could eliminated C from consideration because it is (extended) dominated
- **Extended dominance**: ICER for a given alternative is higher than that of the next, more effective alternative

You can repeat the same analysis for the other treatment strategies

Things to take into account

- Not common to have multiple alternatives; screenings programs are an exception. Do we screen once a year? Twice? Every three years?
- Be careful when reading articles because some authors place costs on the x-axis and effectiveness on the y-axis (then ICER is the inverse)
- Note that in this example we are comparing each treatment sequentially because it follows the decision, much like the stool test example
- The alternatives have different intensities; by the time you have a table like 5.4, several dominated alternatives have been eliminated
- We want to compare an alternative to the next best alternative

Next classes

- Measuring quality of life in cost-effectiveness studies (or cost-utility)
- Then back to measuring health and, more important, the concept of thresholds
- After Spring break, we start with modeling using decision trees and Markov models. All a lot of fun (in the nerdy connotation of fun, of course)