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Big Picture

Not a complete catalog; there are many types of models that are hard
to classify

Most common in EEs: “microsimulations” like discrete event
simulation and agent-based models (confusingly, also called Monte
Carlo simulation models)

We will try to make sense of some jargon today

We’ll explore the basics of infectious disease models

There are many models out there but we will focus on the
Susceptible-Infected-Recovered (SIR) model because it’s relatively
easy to do using Excel

Another variant is the Susceptible-Exposed-Infected-Resistant (SEIR).
This model was used to understand some COVI-19 scenarios in
Colorado
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Patient-level simulations

Patient-level simulations (or microsimulations) model the transitions
of an individual patient rather than a cohort

Very useful to make transition probabilities dependent on patient
history, not just cycle time

For example, we could take into account that the probability of an
event depends on age, sex, disease severity, or time with the disease

These models are all about memory, so we do not have to worry
about the memoryless assumption assumption of Markov models

Some of these models take into account how people interact with
each other (key aspect of infections diseases)
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Discrete event simulation (DES)

Origins in operations research (design and optimization of industrial
processes). As a result, they use different terminology

Like Markov models, events happen in time (discrete periods, like
cycles)

It models entities (e.g. patients, hospitals) that have attributes (e.g.
age, sex, disease history)

Attributes can change in the model and they determine how entities
interact with their environment and how they react to events

Events are “things” that could happen to an entity in an
environment (e.g. death, infection, MI, stroke)

Costs and outcomes (e.g. life years, QALYs) can be added
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Example

Cost effectiveness of improving ambulance and thrombolysis response
times after myocardial infarction (Chase et al, 2006) (available on
Canvas)

“Interventions: Improving the ambulance response time to 75% of
calls reached within 8 minutes and the hospital arrival to thrombolysis
time interval (door-to-needle time) to 75% receiving it within 30
minutes and 20 minutes, compared to best estimates of response
times in the mid-1990s”

Below is a graphical representation of the model
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DES model
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Disadvantages

It may not be obvious but more realism is not always better.
Remember Einstein (if he actually said it):

Everything should be made as simple as possible, but not simpler

More realism means that a lot more data is needed

How do we get transition probabilities that depend on age, sex,
disease history?

Many times the type of model follows the data. Given the data
we have, what is the best model we can build?

Sensitivity analyses are more difficult in DES models (specially
probabilistic sensitivity analyses), which often can’t be done

Computational burden can be a big problem

8 / 47



Infectious diseases and vaccinations (static versus dynamic
models)

Microsimulation models have a clear advantage when considering
infectious diseases and vaccinations studies

The likelihood of contracting an infection depends on the number of
people already infected

Vaccines can be effective even if not all people are vaccinated (herd
immunity)

In static models, the rate of infection (i.e. transition probability) is
fixed. In dynamic models, rate of infection is not fixed and may
depend on the number of people already infected (i.e. possible to
model epidemics)

Discrete event simulations are useful in these situations; agent-based
models are a variation. But our trusty Markov model can be adapted
(more in 10 minutes)

9 / 47



More on types of models

Adapted from Hay (2004). Trying to make sense of modes, with my
notes in red

Software: Net Logo, Arena, and @Risk
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Classic Logo

Basic (and graphical) agent-based modeling of bacterial infection. I
used to program Logo when I was a kid

Source: http://netlogoweb.org/
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Agent-based Coronavirus simulation

Very popular (viral?) animation in the Washington Post:
https://www.washingtonpost.com/graphics/2020/world/

corona-simulator/

Very nice graphs but not possible to study the simulation
analytically
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Summary

Many modeling techniques are used in cost effectiveness but by far
the most common are decision trees and Markov models

They come under a myriad of names. Methods originate in different
fields

Today we will cover a classic model for infectious diseases extensively
used in epidemiology

They are not called Markov models in epi, but they are in fact Markov
models – dynamic Markov models

See Blackwood and Childs (2018) for an excellent introduction (on
Canvas)

We can use the same tools we have learned during the last month to
understand and simulate these models
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Susceptible-Infected-Recovered (SIR) model

This model assumes people can be in 3 states: susceptible to become
infected, infected, or recovered

1 Susceptible people have no immunity to the disease. These people
can become infected by coming into contact with an infected person

2 Infected people have the disease and they can spread it
3 Recovered people survive the disease and have immunity

These are states as we saw before but in these models they are
referred as “compartments.” For this reason models like these are
called compartmental disease models

There is not much agreement on names, but you can think of these
models as dynamic Markov models that come in two flavors,
deterministic and stochastic. We’ll focus on deterministic models

Modeling nomenclature is all over the place
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Dynamics

They are “dynamic” because people move from one compartment
(state) to the other at different rates over time. In other words, the
transition probabilities are not fixed, they change over time

The transition probabilities are themselves a function of other
parameters in the model (which we will cover soon)

The math can get complicated. The rates at which people go from
one state to the other are derivatives; the model is actually a system
of differential equations

The equations were derived by Kermack and McKendrick almost 100
years ago, in 1927

In stochastic dynamic Markov models, the parameters are also
given a probability distribution

But we don’t have to “solve” a system of differential equations. We’ll
use simulations to understand the key insights of the model
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Transition Diagram

The force of infection depends on the proportion of the population
who is infected and the transmission rate. We will denote it by λ
(lambda)
The recovery rate is the rate at which people recover from the
infection. We will denote it by γ (gamma)
(I’m following the convention in this type of model, but there should
be an arrow to itself from the Recovered state. Nowhere else to go
because of immunity.)
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Force of Infection

The force of infection (the equivalent of a transition probability) is not
a constant as in decision trees or the other Markov models we covered

It is defined as λ(I ) = β I
N , where β is the transmission rate, I is the

number of infected, and N is the total population

This is a realistic way of modeling the chances a person is infected.
The larger the proportion infected ( I

N ) the more likely it is people can
become infected

β, the transmission rate, is a function of the rate of contact and
probability of transmission given contact

COVID-19 has a high β. Lockdowns, “social distancing” (should be
physical distancing), masks, etc are attempts to lower either the rate
of contact or the probability of transmission (therefore, lowering β)

In this simple model, we capture all these features with the parameter
β, but we could define β = rc × p(T )
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How are things going to change over time?

Here is the part where the math of the model can be complicated
because I need to show you derivatives, but derivatives are just
rates of change

Over time the rate of change in the number of susceptible people is
going to go down as a proportion of the force of infection (negative
slope):
dS
dt = −λ(I )S = −β I

N S
dS
dt is read as “the derivative of S with respect to time, t,”

Read it as the change in the number of Susceptible over unit of time,
where t could be days, weeks, or months (technically, continuous)

Same as with the other Markov models. We need to adjust
parameters depending on whether we use days, weeks, or months
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How are things going to change over time?

The change in the number of infected (I ) per unit of time depends on
the susceptible becoming infected and the infected recovering

Again, don’t lose sight of the big picture: we are now modeling the
transition probabilities. In previous classes we assumed they were
fixed numbers given by the transition matrix

So the change in the infected people over time is:
dI
dt = β I

N S − γI

The first term is the same as the previous slide –susceptible people
becoming infected as a proportion of the proportion infected. The
second term, γI , are the people recovering after being infected

That’s the most important equation (more on this later)
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How are things going to change over time?

Where are the death? In this baby version of the SIR model we are
not modeling it directly

We could just add a Dead state, but it’s not strictly necessary: the
death will be a proportion of the infected

Or we could assume, as usual, that people can die in any state

The last component is the change in the Recovered:
dR
dt = γI

One more thing, although in this basic model is not really needed: at
any point the total number of people (N) must add up:

N = I + S + R
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SIR equations

To summarize the simple SIR model:

1 dS
dt = −β I

N S

2 dI
dt = β I

N S − γI

3 dR
dt = γI

4 N = I + S + R

Except for 4), a constraint, that’s a system of differential equations
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Fine-tuning the model and variations
If you google the SIR model be aware that many variations exist

1 Some versions explicitly add mortality, which could flow from any of
the states or just the infected state. For the coronavirus, mortality
could be a function of the number of people hospitalized. Higher if too
many in hospitals without ventilators. Or a function of hospital
capacity. Or just a proportion of the infected (I )

2 Some incorporate vaccines. A proportion of the Susceptible could
become vaccinated at a rate ν (nu) (good for modeling measles for
example)

3 Some versions use proportions of people as inputs, so I
N instead of I ,

but the end result is the same
4 Some versions could add more realism by making parameters a function

of other parameters. For example β = cr × p(T ), where cr is the rate
of contact and p(T ) is the probability of transmission

Of course, an important rule of modeling: more realism involves
more needed information

Coronavirus models have used an extension of the SIR model, the
SEIR version
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Susceptible-Exposed-Infected-Recovered (SEIR)

This version adds another state, the Exposed state

The idea is to explicitly model one aspect of infections that is
important: the incubation period

In SEIR, there is an incubation rate; the rate at which exposed people
become infectious

Adding a latency or incubation period delays the initial spread of the
disease –the SEIR model is more realistic than the SIR model because
of the incubation period

SEIR model is another example of the time-honored trick we covered
in our last class. Want to incorporate more features? Add more
health states!!
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Susceptible-Exposed-Infected-Recovered (SEIR)

This is an example of a SEIR model incorporating births and death.
Births, of course, are fairly irrelevant to model the coronavirus

Source: Dorélien, Audrey M., Sebastien Ballesteros, and Bryan T.
Grenfell. ”Impact of birth seasonality on dynamics of acute
immunizing infections in Sub-Saharan Africa.” PLoS One 8, no. 10
(2013).
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World Health Organization Coronavirus model

The WHO developed a SEIR model for COVID-19 incorporating other
features like travel from China. See here for more details: https:

//triplebyte.com/blog/modeling-infectious-diseases

WHO model parameters
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The Colorado Model

Split Infected into two groups states (asymptomatic, symptomatic).
Death and Recovered are absorbing states. Stratified by age

Source: http://www.ucdenver.edu/academics/colleges/

PublicHealth/coronavirus/Pages/coronavirus.aspx
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The Central Role of R0

There is a model number that is central for understanding how
contagious a disease is, the famous R0 (“R-nought”)

R0, called the basic reproductive number, is defined as the“average
number of secondary cases arising from a typical primary case in an
entirely susceptible population” (Blackwood and Childs, 2018)

Think of this as the average (expected) number of cases generated by
one case, or the average number of individuals an infected person
infects

For example, studies of measles have determined that R0 for measles
is about 12 to 18 (super high!). Mumps 4-7. Influenza? 1.4-1.6, but
it depends on strains, as low as 0.9.

COVID-19? We don’t know. Best guesses, anywhere from 1.4 to 4
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Department of Major (MAJOR!) Confusion
R0 is not a fixed number. How many people (on average) an
infected person infects depends on the features of the disease and
the behavior of people

If all of the population is under (draconian) quarantine (like in
Bolivia), then R0 will go down

The numbers I mentioned above are based on studies because we
have had plenty of time to study other diseases, so they are average
numbers based on past outbreaks

Public health interventions are trying to lower R0. But in the context
of the basic SIR model, R0 has to depend on the force of infection β
and the recovery γ

So changing β and γ means changing R0, but it’s not that COVID-19
has a natural, fixed R0 that is out there to be found

Or think about it this way: the R0 in CO is different than that of FL
or Bolivia or China. The virus is the same (so far)
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Back to the simple SIR model

Again, intuitively it makes sense that R0 should depend on the force
of transmission and the recovery rate

The higher the recovery rate, the less time a person stays infected
and stops transmitting the disease

The higher the force of infection, the higher R0

Recall that the rate of transmission depends on the probability of
transmission after contact (feature of the disease) and the contact
rate (behavior driven): β = cr × p(T )

I’m saying here that p(T ) is a feature of the disease, but it depends
how you define it. Wearing masks is trying to reduce the probability
of transmission given contact, so it could depend on behavior as well
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Back to the simple SIR model

In both our simple SIR model and the SEIR model, it turns out
that RO = β

γ (R0 varies depending on the structure of the model)

Another way to write this is RO = β × 1
γ

β is how fast a person is infected (transmission rate). 1
γ can be

viewed as how long a person is in the infected state

So the interplay between how fast a person is infected (contact rate,
probability of transmission given contact) and how long a person is
infected are key to determine the dynamics of the model
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“Solving” the SIR model
The system of differential equations can be studied analytically to
understand the features of the model: How quickly will people become
infected? How many? For how long? How can this be changed?

A key concept in any model like this is the equilibria of the model

Essentially, how does the model look like when there is stability and
nothing is changing? By that I mean that S, I, and R stop changing
over time

Mathematically, equilibrium means that all the differential equations
are equal to zero (that is, no more change)

These stability scenario could mean that there are no more infections
(disease-free equilibrium) or the disease becomes endemic
(infections steadily persist; endemic equilibrium)

(I’m skipping one part that is not that important in the simple
SIR/SEIR model: the other important part in the analysis of
differential equations is whether the equilibria are stable or not)
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“Solving” the SIR model

In our simple SIR model, all the population is susceptible, with no
vaccine. So the only possible equilibrium is no more infections
because at some point everybody will be infected (“disease-free”
equilibrium)

There could be an opportunity to stop an infection, by making β zero,
but that means changing the parameter, which is not an outcome of
the model, but an input (this distinction is very important)

We are NOT going to solve the model analytically. We will play with
a simulation, same stuff we did with our Markov models

I’ll just say that R0 is critical to understanding the behavior of the
SIR/SEIR models

If R0 < 1, the disease stops, slows spreading. If R0 = 1 the disease
becomes endemic (infections change steadily). If R0 > 1, the disease
will continue to spread unless something structurally changes that
lowers R0
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SIR model in discrete time

To use Excel we need to make a slight change: we need to make time
discrete, not continuous

The discrete time version of the model is similar, but now derivatives
become discrete changes

So dS
dt becomes, for example, ∆S

∆t . “Delta” S from one period to the
other is just St+1 − St . To make things simple, time will change by 1
unit. So dS

dt is now St+1−St
1

t + 1 is next period, t is current period

So we have the same system of equations written in a slightly
different way:

1 St+1 − St = −βSt
2 It+1 − It = βSt − γIt
3 Rt+1 − Rt = γIt
4 Nt = St + It + Rt

Why is this helpful? Because we can program those formulas in Excel

33 / 47



Excel

We’ll start with N = 1000, with one person infected, so I0 = 1

Check out the Excel file. Note that we are modeling cumulative
numbers, not the changes

So instead of It+1 − It = βSt − γIt , I’m using It+1 = βSt − γIt + It
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SIR graphically

These curves should look familiar by now

Try changing β, from 0.05 to 0.5. That would make R0 go from 0.5
to 5

Keep γ = 0.1 when changing β but check how it changes too
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Insights

So what did we gain from these models? So many things...

Epidemics can come fast, with a large number of people becoming
infected extremely quickly. Infections grow exponentially. Worse with
a new, highly contagious virus – everybody in the population is
susceptible

Interventions that lower β, and therefore R0, can “flatten” the curve.
Remember, a month ago leaders (and the public) didn’t seem to
understand these issues

Flattening the curve is important because if people do not become
infected at the same time we have enough hospital capacity to treat
them. If not, mortality is going to be higher
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Insights

The curve can be flattened by changing the contact rate (lockdowns,
6 ft apart), the probability of transmission given contact (masks,
shields), and improving the recovery rate (ventilators, experimental
medications)

Note something else: we have a public health crisis and we have
not even modeled mortality

It may seem as it was 10 years ago, but about a month ago some
politicians were arguing that COVID-19 was not a big deal because
mortality is the same as the flu

We actually don’t know if mortality is the same. The number of cases
means little. We do not know the actual number of infections
(denominator). Testing has been a failure

But we could have a crisis regardless. And if we have a capacity crisis,
more people will die
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Insights

Flattening the curve doesn’t mean that the disease is over. With no
cure, we are extending the epidemic. Flattening the curve implies a
longer outbreak

In our SIR model the equilibrium is disease-free because everybody
eventually will get sick (high R0). Nothing in the model stops
transmission other than running out of susceptible people. There is
no vaccine

Why is there a peak? Because the virus starts infecting people but at
some point the susceptible numbers start to come down; the fraction
of infected in the population then decreases. At some point there is
more recovering than getting infected

Stare at the equation for the infected for a while: dI
dt = β I

N S − γI

That equation is positive at the start, then turns negative when
γI > β I

N S . Rewrite as γ > β S
N
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Models are abstractions, not reality!!

It’s great that now everybody and their grandmothers understand
flattening the curve and health system capacity

But models are models, they are not reality

In a couple of years, models will be “calibrated” and we will have a
better estimation of the parameters. Right now, we are guesstimating

As usual with models, people are starting to think that the model is
reality. In particular, there is no reason to believe the actual
data will be a clean curve

It’s likely to be more like rolling hills. Once the worse has passed, we
need to relax the lockdown. That implies increasing β in the middle
of the simulation. What will happen? We’ll probably get another
peak since there is no vaccine yet and we have plenty of susceptible
people in the population

I love how somebody “drew” rolling hills in Gov Polis slides
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Photoshop simulation?
Rolling hills, unsteady hand version. The rolling hills should have
been drawn early in the simulation, though
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Real data

The New York Times published some nice graphs (hard to tell if
China’s data are reliable)

Mortality is mostly a proportion of cases

Source: https://www.nytimes.com/interactive/2020/04/03/

world/coronavirus-flatten-the-curve-countries.html
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Real data

See Japan and South Korea (longer since first case)

Source: https://www.nytimes.com/interactive/2020/04/03/

world/coronavirus-flatten-the-curve-countries.html
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Should we use these models to make predictions?

Yes and no. Yes in the sense that we can make predictions about the
effects of policy changes

But no in the sense that even more sophisticated versions of these
models do not reflect actual reality. We have a lot of parameter
uncertainty (we’ll cover this next week). And with exponential
growth, small changes can make a world of difference

The numbers projecting 100,000 to 200,000 deaths are crude
estimates at best – most likely, they are meaningless (already revised
as of 4/8)

We would be better-off using actual data rather than simulation
models to make projections. In particular, we need to take into
account demographics. SEIR models being used are state-level

This article in the Atlantic about modeling is good:
https://www.theatlantic.com/technology/archive/2020/04/

coronavirus-models-arent-supposed-be-right/609271/
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Colorado
Notice the uncertainty

Source: https://www.denverpost.com/2020/04/06/

colorado-projected-coronavirus-covid-deaths/
44 / 47

https://www.denverpost.com/2020/04/06/colorado-projected-coronavirus-covid-deaths/
https://www.denverpost.com/2020/04/06/colorado-projected-coronavirus-covid-deaths/


How does this end?

Recall that in a SIR/SEIR model without vaccination and R0 > 1, the
stable equilibrium means that there are no more infections because
the virus ran out of susceptible people

Policy in some states has managed to lower β (the rate of
transmission). Remember, to run the simulation we didn’t change
beta, therefore, R0

If we could test everybody in the country at the same time, we could
isolate infected people, thus lowering β. It’s a bit unrealistic but
better testing for sure will help

Most likely, when things get better, we’ll relax, and then tighten,
lockdowns from time to time. Relaxing lockdowns doesn’t mean
going back to normal

There won’t be normalcy until a vaccine is developed

Note how all these predictions are informed by the SIR/SEIR model
but are not model outcomes from one simulation
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Resources

This is changing daily but some models have come to the top

The White House paid attention to the IHME model from U of
Washington: http://www.healthdata.org/covid

Two obnoxious things about that model: black box. Can’t find an
explanation of their methods anywhere. Nice job with the marketing,
though. Another thing: they show a clean curve. Misleading

The other model is from the Imperial College in London. They have
good documentation https://www.imperial.ac.uk/media/

imperial-college/medicine/sph/ide/gida-fellowships/

Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf

They have scenarios with more peaks
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Summary

Many types of models are used in economic evaluations

Usually models give us important insights; insights that were not clear
before constructing a model

But models are just models. Always be careful with models.
Understand the difference between an assumption versus an
outcome of the model. It’s not easy

Do not take models too seriously. Particularly, do not make the
mistake of believing that a model is reality

Read this article by Paul Krugman on the role of models in economics
http://web.mit.edu/krugman/www/formal.html
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