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Big picture

Last week we covered decision trees as they are used in CEA

The new element was the introduction of uncertainty into the
calculation of ICERs

The ICER becomes an expected value

We also saw that decision models are not explicit about time and that
they get too complicated if events are recurrent

Markov models solve these problems

Confusion alert: Keep in mind that Markov models can be
illustrated using “trees.” Also, decision trees and Markov models are
often combined. I’ll get back to this later in the class

3 / 34



Elements of Markov models

The first element of Markov model are so-called health states, such
as well, ill, dead, relief, no relief, headache, no headache

People transition from one health state to the another. For this
reason, Markov models are sometimes called transition models

Each transition has a probability (transition probability)

Transitions happen over a period of time (called a cycle)

Each health state can have a cost and/or benefit associated to it
(called rewards in Markov models; the equivalent of payoffs in
decision model)

And that’s all the key elements we need
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Example

We;’ll use a now-classic example from your textbook and Briggs et al
(2006) (available on Canvas)

Two therapeutical strategies for HIV: zidovudine monotherapy and
zidovudine in combination with lamivudine (for simplicity,
“monotherapy” versus “combination” therapy)

Four possible health states, some of them depending on CD4 counts:

1 State A: CD4 from 200 to 500 (best)
2 State B: CD4 less than 200 (not so good)
3 State C: AIDS (bad)
4 State D: Death (very bad)

Cycle length is one year

We can illustrate the states and all possible transitions with a state
transition diagram
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HIV state transition diagram

All paths lead to death and death leads to... nowhere (aka absorbing
state). Everybody starts in state A

Note that in this example there is no way to get better (no longer
true for HIV)

Possible to remain in same state after a cycle
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Transition probabilities (matrix)

Read them from left to right: probability of transitioning from C to
Death is 0.25

Note that combo therapy has better outcomes. To be precise,
combo therapy’s risk is reduced by about half (0.509)

See Excel file for actual probabilities
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Transition probabilities (matrix)

Note that probabilities must up to one (horizontally):
0.721 + 0.202 + 0.067 + 0.01 = 1 (always check!!)

Note that this implies that we always must “account” for people
transitioning. They can either stay in the same state or they must go
somewhere in each cycle

Similar to decision trees, probabilities are exhaustive and mutually
exclusive

Note death. Death is final. A person who gets there stays there
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Transition probabilities (matrix)

Note death. Death is final. A person who gets there stays there

Note the zeroes. This implies that a transition is not allowed.
Nobody can get better in this example. Nobody can go from state C
to B, or B to A

The transition matrix agrees with the transition diagram
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Where do probabilities come from?

As with decision models, probabilities come from clinical trials,
observational data, meta-analyses, expert panels, surveys...

Note that we could have used a decision tree instead

More precisely, a recursive decision tree with one tree per year but it
would be too complicated (the “bushy” tree problem)

Now we need to add rewards (i.e. payoffs)
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The language of trees vs Markov models
Now probabilities are called transition probabilities. Now events are
states. There are no “branches;” but going from one state to another
has a probability

Now there is time: everything happens in a cycle, which can be 1
week, 1 year, etc

Payoffs are now rewards which are part of each state (more in a
second)

Long history in statistics. Introduced by Andrew Markov in 1906

Careful when googling. We are covering Markov or transition
models, which are examples of a Markov process. But many things
come under the name “Markov process.” Same with decision trees.
Decision trees in machine learning have nothing to do with
decision trees in decision theory. They are actually regression
trees, not decision trees. The similarity is that in both cases you can
draw something that sort of looks like a tree. That’s where the
similarity ends
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Costs

We will first do a cost analysis (we will add life years later)

The HIV study collected health care, community, and medication
costs

Drug costs: zidovudine (£2,278); lamivudine (£2,086); combination
(£4364)

Cost per state (health care and community): A: £2756; B: £3052 C:
£9007; D: £0

Costs are per cycle (i.e. year)

Keep in mind a couple of things: combination therapy is more
expensive but also more effective (first quadrant in the
cost-effectiveness plane)

The worse the state the higher the costs, but once in state “death”
there is no cost. If end-of-life costs were significant, we could have
added another state
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“Solving” Markov models

We now have all ingredients: health states, transition probabilities,
and rewards for each cycle

“Solving” the Markov model means that we will simulate what would
happen to a group (cohort) of people over time (that’s why they are
called cohort models sometimes)

We will then calculate expected costs

In this example, we will simulate the transitions of 1,000 patients in
each type of therapy over 20 years

Why 20 years? Because most of our population won’t live longer. So
it’s really a lifetime time horizon

Pay attention! It’s actually very easy but it’s also very easy to get
confused
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Solving Markov HIV model

Monotherapy: we start with 1000 patients in the healthy state A

After 1 cycle, what will happen?

We know that the probability of staying in state A is 0.721, so afer
one year, 721 will remain in state A (1000 × 0.721)

Same logic for all other states 202 in B, 67 in C, and 10 in D

See, super easy. We are just “allocating” the 1,000 people into the
four possible states after one cycle base on the probabilities of
transition from one state to the other
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Solving Markov HIV model

Now we need to repeat the process for the next cycle

Of the 721 in state A, how many will stay in A? 520 (0.721 × 721)

How many in B? We need to take into account that some will move
from A to B but also that some in B will stay in B:
721 × 0.202 + 202 × 0.581 = 263 (here is where you are likely to
make mistakes)

Easier to see it graphically
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Transition probabilities
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Solving Markov HIV model

After the second year, copy-pasting formula in Excel will do it

Just be careful and make sure some of the cells’ references are “fixed”
(press F4 or double $ sign)

See Excel file for this lecture
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Big picture

We start with a group of patients (the number doesn’t matter, we
could use 1 person, but you need to use the same number of people
in both or do it by person)

Cycle by cycle, we transition them to different health states

That’s it. Really, that’s all. We have simulated disease progression

Note that we are transitioning a group of patients. We are NOT
following each patient (more on this later as it becomes very
important)

We are moving a cohort into the simulation. Each cycle they
accumulate costs and life
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Costs

Now we know what will happen to our cohort over time. What about
costs?

We just need to multiply the number of people in each health state
by the corresponding cost in each cycle

For example, in cycle 2:

520∗(2756+2278)+263∗(3052+2278)+181∗(9007∗2278)+36∗0 =
6, 056, 510.75

Per person: £6060
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Life years gained

We are simulating 20 years of life for these patients

Some of them die (for example, 10 in the first cycle, 26 in the second)

We can therefore calculate life years in each cycle

In the first cycle, 10 people died but 990 were alive so these “alive”
people accumulated 990 life years in the first cycle

In the second cycle, 520 + 263 + 181 = 964 were alive, so they
accumulated another 964 years of life

We do the same for each cycle

At the end of the 20 cycles, we add up all the years of life over the 20
years
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We can plot a survival curve
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Half-cycle correction

Why didn’t we give any life years “credit” to those who died during
each cycle?

Because we essentially assumed that people died at the start of the
cycle

But we should take into account that patients die at different times;
otherwise, we underestimate costs and benefits

Not a big problem if we do the same in both treatments (the shorter
the cycles the less of a problem)

The best solution (the unbiased solution) is to assume that patients
die in the middle of the cycle

This is a result of assuming that patients die (uniformly during the
year. That is, dying follows a uniform distribution. Or said another
way, the probability of death is the same every day during the year
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Half-cycle correction

Check out the formula in the Excel example

We add half the time of those who died during the year

We won’t worry about the half-cycle correction for the rest of the
semester
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CEA

We now have costs and life years gain over the time horizon

We need to repeat the same simulation for another cohort for the
combination group (homework)

The way I worked out this example, we need to simulate 1,000
patients in the combination group

Not really necessary. We could calculate costs and benefits for any
number or do it by person

After calculating costs and benefits for both groups, we can obtain
the ICER
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What about QALYs and other features of CEAs?

Note that adjusting for quality (i.e. preferences) is straightforward

Each health state would have a preference score (the number between
0 and 1) associated with it

We just multiply the score by the time spent in each year

Discounting is easy too: we have costs and benefits per cycle so we
just need to bring them into the present

Note that with Markov models we can go from intermediate to final
outcomes since we’re modeling disease progression

Note that we’re ignoring something important in this basic example:
people getting older but their chance of dying is not changing

Easy to incorporate: increase the chances of dying of other causes by
cycle (next class)
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Department of Pesky Things that Cause
Unnecessary Confusion

Be careful when you read CEA papers

1) Markov models are depicted using transition diagrams, but they
can also be depicted using something that looks like a tree, but it’s
not a decision tree

2) Decision trees and Marvok models can be combined

You can have a Markov models within a decision tree
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Markov models depicted as trees
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Markov models inside decision trees

Some parts of a decision tree could be calculated using Markov
models
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Big picture

Markov models and decision models are not that different

We have changed the language because decision trees and Markov
models have different origins

Health states could be represented by a branch in a decision tree

In the migraine example, health states could be relief, no relief, no
recurrence, recurrence, hospitalization...

The main difference is the introduction of time in the form of cycles
and that recurrent events are easily modeled

In the migraine example, an appropriate cycle could be a day or a
week
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The memoryless property or the Markov assumption

One limiting assumption of cohort Markov models is that transitions
to a state do not depend on the past or the time a patient has
been in a state

In other words, once in a cycle, there is no “memory” of the past

In many cases, how long a patient stays in a state affects the chances
of an outcome

For example, a person experiencing his third bout of depression has
higher chances of worse outcomes

There are ways to fix this limitation: adding additional transition
states (second, third depression episode) and/or making transition
probabilities conditional on past events

In general, this can be an important limitation and we will see
extensions
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When should we use Markov models?

When events are recurrent

When we want to model the “natural history” of the disease

Long time horizon: we want to go for intermediate outcomes to final
outcomes

When life years or QALYs are outcomes of interest

Markov models are the most commonly used tool in cost
effectiveness
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Cycle length and some limitations

Important: We haven’t talked much about this but choosing a
valid cycle length matters

Ideally we want a cycle length in which two events usually do not
happen

Cohort Markov models are not good for modeling infectious diseases:
the probability of infection depends on the number of people infected
and (herd immunity)

Cohort models modeling a group transitioning, but can’t follow a
person

Next class we will see some extensions and tricks we can do to add
more flexibility to Markov models but they do have limitations

We will also cover a basic model of infectious disease using different
tools but also using Excel
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Summary

Markov models allow us to model complex diseases

Markov models better incorporate time and disease progression

Simulating cohort models is easy

As with decision analysis, the hard part is to come up with a model
that isolates the key elements that need to be considered –that’s not
easy

There are extensions to Markov models that are better for some
problems (next week)
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Next class

More examples

Incorporating time dependency

Adding memory to the memoryless model

Temporary states

Other type of models in CEA
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