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ARTICLE

ABSTRACT
Evidence-based teaching practices (EBPs) foster college science, technology, engineer-
ing, and mathematics (STEM) students’ engagement and performance, yet our knowl-
edge of what contributes to the effectiveness of these practices is less established. We 
propose a framework that links four social-cognitive variables—students’ trust in their in-
structors, growth mindset, buy-in to instructional practices, and course engagement—to 
long-standing desired student outcomes of academic performance and intent to persist 
in science. This framework was tested in classrooms identified as having a high level of 
EBP implementation with a multi-institutional sample of 2102 undergraduates taught by 
14 faculty members. Results indicate that the buy-in framework is a valid representation of 
college students’ learning experiences within EBP contexts overall as well as across under-
represented student groups. In comparison to students’ level of growth mindset, students’ 
trust in their instructors was more than twice as predictive of buy-in to how the course 
was being taught, suggesting that students’ views of their instructors are more associated 
with thriving in a high-EBP course environment than their views of intelligence. This study 
contributes to the dialogue on transforming undergraduate STEM education by providing 
a validated student buy-in framework as a lens to understand how EBPs enhance student 
outcomes.

INTRODUCTION
There is variability in the degree to which students accept evidence-based teaching 
practices (EBPs) and learn from them (Brazeal et al., 2016; Nguyen et al., 2017; Bonem 
et al., 2020; Finkelstein et al., 2019; Starr et al., 2020). EBPs are research-supported 
activities that promote student engagement and learning through active learning, for-
mative assessment, metacognition, and inclusive teaching practices (Handelsman 
et al., 2007; Graham et al., 2013; Starr et al., 2020; Theobald et al., 2020). Research 
on EBPs shows benefit for college science, technology, engineering, and mathematics 
(STEM) students (Freeman et al., 2014), and particularly for members of traditionally 
underrepresented groups in the sciences (Gross et al., 2015; Theobald et al., 2020). 
Nevertheless, other research indicates that some students show resistance to learning 
in ways prescribed by EBPs and therefore miss out on the intended benefits (Patrick, 
2020).

Despite national calls for undergraduate STEM education reform (Woodin et al., 
2010), there has yet to be widespread implementation of EBPs by instructors, and the 
lecture remains commonplace (Stains et al., 2018). Moving the field forward requires 
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further investigation into the variability in college science stu-
dents’ commitment to EBPs (Corwin et al., 2015). We propose 
that a deeper understanding of the social and cognitive pro-
cesses that underlie students’ buy-in to the EBP learning process 
will enable instructors to be more deliberate in fostering stu-
dent acceptance of EBPs, improve students’ feelings about these 
practices, and expand instructors’ use of them.

The level of college student buy-in to active learning and 
other EBPs in a science course, along with its ability to increase 
desired student outcomes, was initially explored by Cavanagh 
et al. (2016) based upon a faculty buy-in framework for adopt-
ing EBPs in their teaching (Aragón et al., 2017). The research 
was conducted in one large introductory science course taught 
by one instructor. This preliminary work had students make 
judgments about the extent to which they believed that various 
EBPs that they had been exposed to, such as group work, were: 
1) educationally valuable and 2) beneficial to their own learn-
ing. The resulting framework of exposure–persuasion–identifi-
cation–commitment (EPIC; Cavanagh et al., 2016) provided a 
method for describing and measuring different levels of a stu-
dent’s buy-in to an instructor’s use of EBPs. It also demonstrated 
significant positive associations between student commitment 
(i.e., buy-in), engagement in self-regulated learning, and subse-
quent course performance.

In addition to testing the effects of student buy-in itself, fac-
tors that influence buy-in are also important. Drawing from an 
interpersonal relationship theory (Reis and Gable, 2015) and a 
growth mindset perspective (Dweck, 2008), in a follow-up 
study Cavanagh et al. (2018) tested the associations of two 
social-cognitive variables—trust and growth mindset—with 
student buy-in to EBPs. This work confirmed that both trust and 
growth mindset were significant predictors of student buy-in.

The justification for testing students’ growth mindset as part 
of the buy-in framework is well grounded in the psychology and 
education literatures as a consistent predictor of educational 
success for adolescents and young adults (Dweck, 2008; Yeager 
et al., 2016; Degol et al., 2018). Students who possess a growth 
mindset tend to view learning as an opportunity to expand their 
knowledge and intelligence. In contrast, a fixed mindset rep-
resents a view that intelligence is a static entity that is relatively 
resistant to change and experience. Therefore, students with a 
growth mindset are more likely to view classroom experiences 
as learning opportunities and embrace EBPs (Cavanagh et al., 
2018).

In contrast to growth mindset, trust, as studied in the college 
classroom, is a relatively new construct that may also relate to 
facilitating student buy-in within active-learning contexts. In 
terms of background, it has been well established by a variety of 
studies that interaction between instructors and students plays 
a critical role in student learning in undergraduate contexts 
(Komarraju et al., 2010; Kim and Sax, 2014; Fedesco et al., 
2019; Snijders et al., 2020). For instance, Fedesco et al. (2019) 
found that college students who felt more connected to their 
instructors demonstrated more interest in a course, put forth 
more effort, and perceived they learned more. Students’ trust in 
their instructors refers to “a perception that the instructor 
understands the challenges facing students as they progress 
through the course, accepts students for who they are, and cares 
about the educational welfare of students” (Cavanagh et al., 
2018, p. 2). The extent to which students trust their instruc-

tors—that is, view them as understanding, accepting, and car-
ing—is likely to predict their attitudes toward courses and will-
ingness to engage in course activities. This concept of trust is 
particularly important to examine in college STEM courses, as 
many disciplines engage instructors who are highly regarded 
researchers but often undervalue the importance of instructor–
student relationships (Christe, 2013).

Although previous work has shed some light on the 
social-cognitive factors influencing college students’ engage-
ment and performance (Cavanagh et al., 2016, 2018), it has at 
least two important limitations. First, previous work was con-
ducted in only one large college science course with one instruc-
tor (Patrick, 2020). Therefore, there is a need for testing the 
effects of student buy-in on a broader sample of instructors and 
students across multiple contexts. Second, a more integrated 
analysis of the social-cognitive factors is needed. Cavanagh and 
colleagues’ analysis was limited in that it independently tested 
the contributions of growth mindset and trust to buy-in, engage-
ment, and course grades rather than testing a simultaneous, 
fully linked buy-in framework (Cavanagh et al., 2018). The cur-
rent study addresses these two limitations by using a multi-in-
stitutional sample to test a comprehensive student buy-in 
framework.

THE CURRENT STUDY
The current investigation focused on two key research ques-
tions. Our primary question concerned whether the hypothe-
sized buy-in framework (see Figure 1), which is an extension of 
prior research from Cavanagh et al. (2016, 2018), can be used 
to understand college students’ learning experiences across 
instructors in STEM classrooms featuring EBPs. Based on the 
literature, we hypothesize that students’ trust in instructors and 
growth mindset will enhance college students’ buy-in toward 
EBPs, through the pathway from persuasion to identification to 
commitment. In turn, this will foster student engagement and 
subsequently affect desired student outcomes, including intent 
to persist in science and final course grade. To understand the 
generalizability of the proposed buy-in framework, as a fol-
low-up analysis, we further examined whether the variable 
interrelationships hold in the same way across different racial/
ethnic groups and between male and female students.

The present study contributes to the existing literature on 
college STEM education reform in several ways. It is the first 
study to evaluate the tenets of a buy-in framework that links 
students’ trust, growth mindset, buy-in, and engagement with 
intent to persist in science and academic performance. Second, 
the present study was conducted across a number of science 
courses and institutions with a large student sample. Compared 
with the other studies with student samples within a large sin-
gle course (Cavanagh et al., 2016, 2018), the findings of the 
current study answer calls to be more generalizable in terms of 
researching broader contexts (Patrick, 2020) and therefore are 
more informative for educational practice and policy. Third, it is 
more statistically robust because it uses the technique of struc-
tural equation modeling (SEM) with latent variables, through 
which we were able to explicitly specify the measurement errors 
associated with the constructs, obtain better estimates of the 
true interrelationships among the variables of interest, and 
simultaneously test multiple relationships specified in the 
buy-in framework.
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METHODS
Participants
The current study’s sampling procedure consisted of two phases. 
First, we identified a sample of instructors who had attended at 
least one Summer Institute on Scientific Teaching (SI) and who 
were implementing a high number of EBPs. Second, we sur-
veyed students in courses taught by these instructors.

In terms of background, the SI is a four-and-a-half-day inten-
sive faculty development training focused on active learning, 
formative assessment, and inclusive teaching practices. The SI 
was developed for college STEM faculty and instructors (Han-
delsman et al., 2007). During the SI, participants engage in ses-
sions on inclusive teaching, active learning, assessment, how 
people learn, and institutional transformation. Participants also 
work in teams to develop a 15-minute teachable unit incorpo-
rating research-based instructional strategies. The SI’s larger 
aim is to transform undergraduate science courses to be more 
active, engaging, and evidence based. For more description of 
the SI and faculty adoption of its principles in the college STEM 
classroom, see Durham et al. (2020).

Instructor Sample. To identify our instructor sample we relied 
on data from a 2014 census survey distributed to ∼1179 alumni 
of the SI (Aragón et al., 2017). Instructor respondents (n = 728) 
self-reported use of 19 scientific teaching techniques consistent 
with a taxonomy of scientific teaching practices (Couch et al., 
2015) relating to active learning, formative assessment, and 
inclusive teaching practices. From this 2014 data set, we identi-
fied a subgroup of “high-implementing” instructors, defined as 
those who reported implementing 17 or more scientific teach-
ing practices in their course(s) since attending an SI. Twen-
ty-five instructors were then randomly selected from this group 
of high implementers and invited to participate in the current 
study, and 15 instructors ultimately agreed to participate. Their 
self-reported teaching practices were confirmed with an in-per-
son visit and teaching observation by a member of the research 
team (AJC) in each targeted instructor’s classroom. One instruc-
tor was removed from the study due to the inconsistency 
between the instructor’s self-reported teaching practices data 
and the researcher’s observation data.

Fourteen high-implementing instructors from 14 institutions 
were ultimately included in the study, including 11 women and 
three men. Each instructor attended at least one SI training. 

Seven instructors taught in R1 public universities, three instruc-
tors taught in R1 private universities, two instructors taught in 
R2 public universities, and two instructors taught in other types 
of universities.

Student Sample. Students who enrolled in the targeted 
SI-trained instructors’ courses were contacted toward the end of 
the Spring semester via emails and invited to participate in an 
online survey administered with Qualtrics survey software 
(Qualtrics, 2015). Out of the 2787 student surveys sent, 2133 
responses were received, for a response rate of 76.5%. Thirteen 
cases were eliminated from the data due to duplicate responses. 
We also removed four students who did not consent to partici-
pate in the research. Outlier analysis using leverage values, Stu-
dentized deleted residuals, and Cook’s D values indicated 14 
extreme cases, which were eliminated from the analysis. There-
fore, the final analytic sample includes 2102 unique student 
responses from 14 high-implementing instructors’ classes.

Of the participants, 61.9% identified as female, 32.8% iden-
tified as male, and 1.2% identified as “other” or chose not to 
answer. About 36.5% of the participants were between 18 and 
19 years, 40.2% of the participants were between 20 and 21 
years, 12.5% of the participants were between 22 and 24 years, 
6.0% of the participants were 25 years or older, and 0.8% of the 
participants chose “other” or not to answer. Most of the partici-
pants self-identified as: White non-Hispanic (64.7%), followed 
by South Asian (7.8%), African American (8.9%), East Asian 
(7.2%), Hispanic/Latino (7.0%), Middle Eastern (3.6%), and 
Native American (2.0%). Students were allowed to check mul-
tiple racial categories, so the sum of the percentages was greater 
than 100%.

We converted the variable of race/ethnicity using the follow-
ing rules: 1) if a student self-identified as African American, 
Hispanic/Latino, or Native American, we assigned the student 
to the group of underrepresented minority (URM); 2) among 
the remaining students, if a student self-identified as South 
Asian, East Asian, or Middle Eastern, we assigned the student 
to the group of “Other;” 3) if a student self-identified as only 
White, we assigned the student to the group of White; and 4) 
all other cases were considered as missing cases on this vari-
able. Most of the participants were assigned to the group of 
White (57.8%), followed by Other (16.8%), URM (16.6%), and 
Missing (8.9%). Students completed the online survey outside 
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FIGURE 1. The proposed buy-in framework of college students’ learning experiences in transformed STEM classes. Rectangles represent 
observed variables and ovals represent latent variables in the path diagram.
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course meeting times and were offered nominal course partici-
pation credit (<1% of final grade) for completing the survey. 
Students in these courses who did not wish to participate in this 
study were given an alternative assignment worth equivalent 
credit. This project was granted exempt status from each insti-
tution’s Institutional Review Board Human Subjects Committee, 
as it examined standard educational practices. IRBs at other 
participating institutions were also engaged to follow their 
institutional human subjects research guidelines.

Measures
Growth Mindset. Students’ views on learning as an opportunity 
for growth were assessed using Dweck and colleagues’ three-
item mindset measure (Dweck et al., 1995). Sample items 
included: “You have a certain amount of intelligence, and you 
can’t really do much to change it.” Students rated each statement 
on a scale from 1 (“strongly disagree”) to 6 (“strongly agree”); 
these items were each reverse scored so that higher scores indi-
cated a growth orientation. Growth mindset scale reliability in 
this study was strong (α = 0.93). Factor loadings of all items 
ranged from 0.84 to 0.96. The three items of Dweck et al.’s 
(1995) measure were used as observed indicators in the SEM.

Trust. Students’ levels of trust in their instructors were assessed 
using a nine-item measure that examined three components of 
trust: understanding, acceptance, and care. This measure was 
developed by Cavanagh et al. (2018) to extend Clark and Reis’s 
(1988) close personal relationship framework to educational 
settings. Students rated their agreement with each of the nine 
items based on their experiences in their instructor’s course in 
the Spring 2016 term, with the scale ranging from 1 (“strongly 
disagree”) to 5 (“strongly agree”). Sample items included: “My 
instructor gets me” (understanding subscale); “My instructor 
accepts me for who I am” (acceptance subscale); and “My 
instructor truly cares about my educational welfare” (care sub-
scale). Two reversed items were eliminated from the analysis 
due to low factor loadings. This revised measure showed satis-
factory reliability (understanding: α = 0.83; acceptance: α = 
0.85; care: α = 0.90) and construct validity (root-mean-square 
error of approximation [RMSEA] = 0.07, comparative fit index 
[CFI] = 0.99, the Tucker-Lewis index [TLI] = 0.98). Standard-
ized factor loadings are included in the Supplemental Material 
(see Supplemental Table S1). To test the SEM, we created four 
parcels. We define a parcel as an averaged combination of 
highly correlated items. Each parcel included items from one or 
two components of trust. For an example of how a parcel was 
created, see Supplemental Table S2. To test the SEM for the 
trust variable, we formed four parcels of trust items. Each parcel 
included items from one or two components of the trust mea-
sure (care, understanding, acceptance).

Buy-in: Exposure, Persuasion, Identification, and Commit-
ment (EPIC). Student responses to the introduction of EBPs 
were assessed using the EPIC framework (Cavanagh et al., 
2016), a multidimensional measure that gauges four constructs 
in relation to experiencing EBPs: exposure (E), persuasion (P), 
identification (I), and commitment (C). Using a binary 
“yes”/”no” response scale, students were asked to indicate 
whether they were exposed to a series of 25 EBPs in their cur-
rent course (exposure). Sample EBPs items included: “I 

answered questions in class using a clicker or other polling 
method”; “I completed in-class activities in groups of two or 
more”; and “I presented my scientific ideas in writing.”

For the practices to which students indicated exposure, they 
were then prompted to indicate whether they felt each practice 
was beneficial (persuasion), whether they liked each practice 
(identification), and whether they would like to engage in the 
practice in future courses (commitment).

Student buy-in toward EBPs was indicated by the level of 
commitment of the EBPs along the exposure–persuasion–iden-
tification–commitment pathway. Scores for exposure, persua-
sion, identification, and commitment from the student sample 
each ranged from 0 to 1. Given the binary nature of the scale, a 
Kuder-Richardson reliability coefficient (KR20) was computed 
for the four dimensions of the instrument (exposure, KR20 = 
0.87; persuasion, KR20 = 0.92; identification, KR20 = 0.90; and 
commitment, KR20 = 0.92), which were each found to show 
acceptable reliability.

Once a student indicated exposure to an EBP, that student 
was asked three follow-up questions about persuasion, identifi-
cation, and commitment. To convert each set of binary data for 
persuasion, identification, and commitment into continuous 
data, which would allow us to incorporate them into the SEM 
model, we created four “parcels” for each construct by averaging 
six or seven items from the 25 EBPs (25 items divided by four 
parcels equals six to seven items). We did this because it is 
impractical to include 25 indicators in the SEM model. For 
example, the first parcel for persuasion was created based on six 
items that were randomly selected from the list of 25 EBPs (see 
Supplemental Table S2). The score was computed using a sum 
of “yes” responses toward persuasion divided by the sum of 
“yes” responses toward exposure and represents an uptake of 
practice (i.e., a ratio of degree of uptake). The same rule was 
applied to computing the scores of the other three parcels. An 
illustration of how we created the first indicators of persuasion, 
identification, and commitment is included in the Supplemental 
Material (see Supplemental Table S2). The measurement model 
with the continuous indicators demonstrated a satisfactory 
model fit (RMSEA = 0.09, CFI = 0.95, TLI = 0.93) and strong 
factor loadings (see Supplemental Table S1).

Engagement. Students self-reported engagement in self-regu-
lated learning behaviors for the current course using subscales 
from the Motivated Strategies for Learning Questionnaire 
(MSLQ) (hereafter engagement; Pintrich et al., 1993), for 
which participants rated a series of 29 learning behaviors. Stu-
dent responses were based on the extent to which each item 
reflected their experiences in their current course. Scale points 
ranged from 1 (“not at all true of me”) to 7 (“very true of me”), 
with higher scores indicating more substantial engagement. 
Subscales from the MSLQ included in the current study are: 
Elaboration (e.g., “When reading for this class, I try to relate the 
material to what I already know”), Organization (e.g., “When I 
study for this course, I go through the readings and my class 
notes and try to find the most important ideas”), Critical Think-
ing (e.g., “I often find myself questioning things I hear or read 
in this course to decide if I find them convincing”), Metacogni-
tive Self-Regulation (e.g., “Before I study new course material 
thoroughly, I often skim it to see how it is organized”), and 
Time and Study Environment Management (e.g., “I usually 
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study in a place where I can concentrate on my course work”). 
Reliability was acceptable for all subscales: Elaboration (six 
items, α = 0.77), Organization (four items, α = 0.61), Critical 
Thinking (five items, α = 0.63), Metacognitive Self-Regulation 
(10 items, α = 0.78), and Time and Study Environment Man-
agement (four items, α = 0.71).

While the confirmatory factor analysis (CFA) model-fit indi-
ces for the measures of trust, mindset, buy-in, and persistence 
all had satisfactory model fit, for the engagement variable, the 
goodness-of-fit indices were inadequate (see Supplemental 
Table S1). However, in the current study, we are mostly inter-
ested in assessing student engagement in general and the rela-
tionship between engagement and other variables, rather than 
any of the five specific subconstructs of the MSLQ. Therefore, 
we created four composite parcels to assess the latent variable 
of engagement by using the domain-representative approach 
(Little et al., 2002). Each parcel included items from all subcon-
structs; however, the number of items varied across the four 
parcels due to the odd number of items in the MSLQ. The mea-
surement model with four parcels demonstrated excellent 
model fit: RMSEA = 0.04, CFI = 1.00, TLI = 1.00.

Final Course Grade. Students’ final course grades were used 
as the primary performance outcome. Grades were provided by 
each instructor, then normalized to a 4.0-scale score in the fol-
lowing manner: “A+”/“A” = 4.0, “A−” = 3.7, “B+” = 3.4, “B” = 
3.0, “B−” = 2.7, “C+” = 2.4, “C” = 2.0, “C−” = 1.7, “D+” = 1.4, 
“D” = 1.0, “D−” = 0.7, “F”/“W” = 0.0. Because there was only 
one indicator for this construct, final course grade was included 
in the SEM as an observed endogenous variable.

Science Persistence. The likelihood of student persistence in a 
science field, both within and following the college experience, 
was assessed using an established measure known as the Per-
sistence in the Sciences (PITS) instrument (Hanauer et al., 
2016). Leveraging existing psychological assessment instru-
ments, the PITS measure is a six-factor structure that includes: 
project ownership (emotion and content), self-efficacy, science 
identity, scientific community values, and networking. For these 
six factors, the instrument has been shown to have strong inter-
nal consistency (Cronbach’s alpha = 0.96) (Hanauer et al., 
2016). In addition, the PITS instrument also has five outcome 
measures/items focused on intent to persist in the sciences with 
a scale from 1 (“Strongly Disagree”) to 5 (“Strongly Agree”), 
with higher scores indicating greater intent to persist in science.

In the present study, we included only the five outcome 
items. These items and their standardized factor loadings in the 
parentheses are: “Following this course, I intend to enroll in sim-
ilar courses” (0.49); “I intend to complete a science related 
undergraduate degree” (0.74); “In the future, I intend to enroll 
in a science related graduate program” (0.81); “My future career 
will involve collecting, analyzing, and reporting scientific data” 
(0.60); and, “In the future, I would like to be a research scien-
tist” (0.44). We removed the first (0.49) and fifth (0.44) items 
from analysis due to both empirical and theoretical reasons. The 
first reason was empirical, due to unsatisfactory factor loadings. 
The second reason was more theoretical and based upon observ-
ing the poor factor loadings. Specifically, we hypothesize that 
the unsatisfactory loadings are due to a mismatch between the 
context presently being studied and that in which the PITS sur-

vey was created. The PITS was initially developed to measure 
persistence among students enrolled in course-based under-
graduate research experiences (CUREs). In CURE courses, stu-
dents conduct research projects and, in doing so, gain some pro-
fessional research skills. In retrospect, the two eliminated items 
were highly specific to the CURE research context and therefore 
were not well-suited to the population polled in this study, that 
is, students enrolled in a wide range of college science courses.

After eliminating these items, the remaining items demon-
strated acceptable internal reliability (α = 0.74) and construct 
validity. Therefore, these three items were used as observed 
indicators in the SEM.

Analyses
The hypothesized framework (see previous Figure 1) was exam-
ined with SEM. In our framework, all constructs except final 
course grade are treated as latent variables, because, strictly 
speaking, these variables (e.g., trust) cannot be observed or 
measured directly. When testing a full SEM, a latent variable 
analysis yields better estimates of the true relationships between 
the constructs (Hardre and Reeve, 2003; Hsu et al., 2019). In 
SEM, parceling is a latent variable measurement practice that is 
commonly used (Little et al., 2002). A parcel is an aggre-
gate-level indicator that consists of the average of two or more 
items from the latent variable. Because SEM models with par-
celed data are more parsimonious, using several parcels for 
each latent variable can also provide improved reliability and 
improved relationships with other variables (Little et al., 2002; 
Brown, 2006). In the current study, parcels were created based 
on the following rules: 1) four parcels for each construct ensures 
that the measurement models were overidentified; 2) each par-
cel includes items from all subconstructs when possible; and 3) 
items are randomly assigned to parcels.

We used the robust maximum likelihood estimator as the esti-
mation method in our analysis. The following commonly used 
goodness-of-fit indices were examined to evaluate model fit in 
the SEM: RMSEA, TLI, and CFI. The TLI and CFI values range 
from 0 to 1, and values above 0.95 are indicative of a good fit. 
RMSEA value also ranges between 0 and 1, but values closer to 0 
are indicative of a better-fitting model. Values below 0.08 indicate 
a good fit (Hu and Bentler, 1999). A significant factor loading, as 
determined by a standardized coefficient of 0.30 or above, indi-
cates that the indicator is a good measure of the underlying factor 
(Hatcher and Stepanski, 1994). Because the observations in the 
current study are not independent (i.e., students are “nested” 
within each instructor), we examined the intraclass correlation 
coefficients (ICCs) for all endogenous variables (see Supplemen-
tal Table S3). The observed indicators of engagement, persua-
sion, identification, and commitment had small ICCs, suggesting 
that the impact of the hierarchical structure of the data is mini-
mal. Nevertheless, we found large ICCs in persistence and final 
course grade. To account for the variance explained by 
between-instructor differences, the variable (i.e., Faculty ID) was 
recoded into a set of 13 dummy-coded variables and entered into 
the SEM to control for nesting (Cohen et al., 2003).

After confirming the hypothesized framework, we carried 
out a series of multigroup SEMs to evaluate the invariance of 
path coefficients across White, URM, and Other students and 
between female and male students. First, we examined the 
baseline model with all parameters left free to vary across 
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groups. Then we constrained the factor loadings of the mea-
surement to be equal in the groups and compared it with the 
baseline model. No significant differences in the model fit sug-
gests that the measurement has been understood similarly 
across groups (Little, 1997). In this study, we used chi-square 
differences to evaluate the equivalence across groups. After 
demonstrating the measurement invariance across groups, we 
moved on to test the invariance of the relations between the 
constructs across the groups of intererst by constraining the 
path coefficients to be equal across groups. We constrained all 
structural links to be equal across groups and compared the 
all-constrained model with the baseline model. If the change in 
chi-square between the all-constrained model and the baseline 
model is nonsignificant, then the equivalence of the structural 
model is confirmed. Statistics were conducted using R v. 4.0.2 
and the lavaan package (Rosseel, 2012).

RESULTS
The Buy-in Framework Was Supported and Can be 
Used to Understand Students’ Learning Experiences in 
Transformed STEM Classes
Before testing the hypothesized framework, we checked 
descriptive statistics and zero-order bivariate correlations on all 
variables (see Table 1). Most of the correlation coefficients were 
in the predicted direction and significant, which suggested that 
our data are appropriate for conducting SEM (Tabachnick et al., 
2007). Indicator-level correlations and descriptive statistics are 
reported in Supplemental Table S6.

The test of the buy-in framework using SEM indicated that it 
was a good fit to the data, χ2(570) = 2748.45, p < 0.001, TLI = 
0.92, CFI = 0.93, RMSEA [90% confidence interval (CI)] = 
0.046 [0.044, 0.047]. While the χ2 test was significant, this test 
is sensitive, especially when the sample size is large, and a sig-
nificant χ2 statistic is expected in most SEM models (Brown, 
2006). All factor loadings in the measurement model were sig-
nificant at the p < 0.001 level, with associated z-values ranging 
from 16.65 to 63.57. After verifying the psychometric quality of 
the measurement model, we evaluated the structural relation-
ships specified in the hypothesized model. All of the completed 

standardized path coefficients were significant and in the 
expected directions.

Figure 2 presents the final structural equation model with 
completely standardized regression coefficients. In accordance 
with our hypothesis, student trust (β = 0.37, p < 0.001) and 
growth mindset (β = 0.15, p < 0.001) were positively associated 
with persuasion. In line with the EPIC framework, student per-
suasion was positively associated with student identification 
(β = 0.15, p < 0.001) and commitment (β = 0.35, p < 0.001). 
Student identification was positively associated with commit-
ment (β = 0.57, p < 0.001). Student commitment (β = 0.21, 
p < 0.001) was positively associated with student engagement 
in self-regulated learning behaviors, which in turn was associ-
ated with student persistence in science (β = 0.29, p < 0.001) 
and final course grade (β = 0.22, p < 0.001).

The Buy-in Framework Was Also Supported across 
Different Racial/Ethnic Groups and between Male 
and Female Students
To examine the generalizability of the student buy-in frame-
work across various racial/ethnic groups, we first estimated a 
model in which all parameters in White, URM, and Other 
groups were simultaneously and freely estimated. The fit of 
the initial unconstrained model was good, χ2 (1710) = 
4077.62 p < 0.001, TLI = 0.91, CFI = 0.92, RMSEA [90% CI] = 
0.048 [0.046, 0.050], which suggested that the buy-in frame-
work represented a good fit to the data in White, URM, and 
Other groups. Because two of the instructors only had one 
student in the “Other” group, we only included 11 dum-
my-coded group-level variables in the invariance analysis 
regarding race/ethnicity. Model-fit indices for each group can 
be found in the Supplemental Material (see Supplemental 
Table S4).

After demonstrating the generalizability of the framework 
across various racial/ethnic groups, we examined the equiva-
lence of the measurement by constraining the factor loadings of 
the measurement to be equal in the groups and compared the 
constrained measurement model with the initial unconstrained 
model. The fit of the constrained measurement model was 

TABLE 1. Descriptive statistics and bivariate correlation coefficients among variables in the hypothesized framework

Trust
Growth 
mindset Persuasion Identification Commitment Engagement

Science 
persistence

Course 
grade

Trust 1 0.07** 0.34** 0.21** 0.21** 0.28** 0.10** 0.18**
Growth mindset 1 0.15** 0.07* 0.11** 0.07* 0.04 0.06*
Persuasion 1 0.12** 0.38** 0.26** 0.11** 0.15**
Identification 1 0.54** 0.19** 0.02 0.10**
Commitment 1 0.16** 0.10** 0.16**
Engagement 1 0.22** 0.17**
Science persistence 1 0.11**
Course grade 1
Mean 3.65 4.42 0.65 0.52 0.42 4.57 3.92 2.66
SD 0.79 1.24 0.31 0.28 0.32 0.86 0.95 0.98
Min 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00
Max 5.00 6.00 1.00 1.00 1.00 6.75 5.00 4.00
Skewness −0.64 −0.60 −0.65 −0.13 0.25 −0.22 −1.14 −0.25
Kurtosis 0.90 −0.35 −0.68 −0.84 −1.19 0.69 1.24 −0.75

*p < 0.05.
**p < 0.01.
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good, χ2 (1748) = 4119.44, p < 0.001, TLI = 0.91, CFI = 0.92, 
RMSEA [90% CI] = 0.048 [0.046, 0.050], and the difference 
between the constrained measurement model and the uncon-
strained model was nonsignificant, ∆χ2 (38) = 41.82, p = 0.31, 
suggesting that all constructs were understood similarly across 
the three racial/ethnic groups. Next, we constrained all struc-
tural links to be equal across the three groups. The fit of the 
all-constrained model was good, χ2 (1764) = 4138.55, p < 
0.001, TLI = 0.91, CFI = 0.92, RMSEA [90% CI] = 0.048 [0.046, 
0.049].

The change in chi-square between the all-constrained model 
and the unconstrained model was nonsignificant, ∆χ2 (54) = 
60.93, p = 0.24, suggesting that all path coefficients were com-
parable across the three groups. In other words, the relation-
ships specified in the buy-in framework were consistent across 
ethnic/racial groups. Therefore, the all-constrained model was 
chosen as the final solution for the invariance analysis regard-
ing ethnicity/race.

The generalizability of the buy-in framework was further 
examined with respect to gender. The fit of the initial uncon-
strained model was good, χ2(1140) = 3336.14, p < 0.001, TLI = 
0.92, CFI = 0.93, RMSEA [90% CI] = 0.046 [0.044, 0.047], 
which suggested that the buy-in framework represented a good 
fit to the data in both male and female groups. Separate mod-
el-fit statistics are reported in Supplemental Table S4. Next, we 
tested the measurement equivalence across the two groups. We 
constrained the factor loadings of all constructs to be equal 
across the two groups. The fit of the constrained measurement 
model was still good, χ2 (1159) = 3370.86, p < 0.001, TLI = 
0.92, CFI = 0.93, RMSEA [90% CI] = 0.045 [0.044, 0.047]; 
however, the difference between the constrained measurement 
model and the unconstrained model was significant, ∆χ2 (19) = 
34.72, p = 0.02, suggesting that the measures might be under-
stood differently by the two gender groups. With a series of 
measurement invariance analyses, we found that the factor 
loadings of measure were different between male students and 
female students (see Supplemental Table S5). The equivalence 
of the structural model was not examined with respect to gen-

der due to the nonequivalent measure. We included the correla-
tion matrices and descriptive statistics among subgroups in 
Supplemental Tables S7 and S8.

DISCUSSION
By testing and validating a student buy-in framework, the pres-
ent investigation contributes to our understanding of the social 
and cognitive factors influencing college science students in evi-
dence-based teaching contexts. It directly addresses calls for 
investigating the underlying mechanisms of how EBPs enhance 
student outcomes (Dolan, 2015).

We found that students’ level of commitment—or buy-in—to 
EBPs is key to attaining many of the long-desired student out-
comes of undergraduate STEM education reform efforts 
(Woodin et al., 2010), including for students in large introduc-
tory science classroom settings. Specifically, we show that stu-
dents’ perceived educational value of their instructors’ use of 
EBPs is positively associated with their level of engagement in 
course-related activities, their academic performance, and their 
intent to persist in science. Drawing upon other key elements of 
the learning process identified in previous studies (Cavanagh 
et al., 2016; England et al., 2017; Cavanagh et al., 2018; Fink 
et al., 2018; Tharayil et al., 2018), we examined the factors that 
might influence students’ buy-in to EBPs and their effects on 
student outcomes. We found that trust and growth mindset 
influence student buy-in and subsequently affect student aca-
demic performance and intent to persist in the sciences. Nota-
bly, trust was a particularly strong predictor of student buy-in, 
over and above that of growth mindset. In addition, our invari-
ance analyses on the buy-in framework showed that: 1) the 
constructs examined in the study are understood similarly by 
participants across different gender and racial/ethnic groups, 
and 2) the relationships specified in the buy-in framework are 
generalizable to each demographic group studied.

Importantly, the current study moves beyond the context of a 
single active-learning biology classroom to a number of science 
courses featuring multiple styles/settings of EBPs. Data from a 
sample of 2102 undergraduates and 14 instructors teaching 

Growth 
Mindset

Trust

Persuasion

Identification

Commitment Engagement

Science 
Persistence

Grade

Buy-in

T1 T2 T3 T4

G1 G2 G3

P1 P2 P3 P4

I1 I2 I3 I4

C1 C2 C3 C4

E1 E2

E3 E4

SP1 SP2 SP3

.37

.15

.21

.29

.22

.15 .57

.35

.88 .90 .81 .79

.91 .96 .84

.866 .80 .76 .86

.82
.72 .71

.79

.90
.82 .77

.86

.79 .83

.76 .88

.64
.79 .47

FIGURE 2. The SEMs with standardized coefficients. Model fit:  χ2(570) = 2748.45, p < 0.001, TLI = 0.92, CFI = 0.93, RMSEA [90% C. I.] = 
0.046 [0.044, 0.047]. Trust item parcels = T1-T4. Growth mindset item parcels = G1-G3. Buy-in item parcels for persuasion = P1-P4. Buy-in 
item parcels for identification = I1-I4. Buy-in item parcels for commitment = C1-C4. Engagement item parcels = E1-E4. Science persistence 
item parcels = SP1-SP3.
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across 28 transformed science classes indicate that the proposed 
student buy-in framework is valid in understanding college stu-
dents’ learning experiences in general as well as across diverse 
groups in terms of gender and race/ethnicity. The confirmation 
of this buy-in framework affirms the need to better understand 
students’ perspectives on course activities as well as the relative 
importance of social and cognitive processes students go through 
in order to gauge and meaningfully assess the impact of faculty 
teaching practices.

For example, although student trust of instructors and 
growth mindset were both significantly associated with buy-in 
toward EBPs, we observed that the strength between trust and 
buy-in was much stronger than that between growth mindset 
and buy-in. This finding was also reported by Cavanagh and 
colleagues in a single classroom with one high-implementing 
EBP instructor (Cavanagh et al., 2018). The importance of this 
finding here is that across 14 high-implementing instructors, 
trust of instructors was more than twice a stronger and more 
consistent predictor of student outcomes—persuasion, identifi-
cation, and commitment, as well as engagement and course 
performance—whereas growth mindset had a small effect on 
student outcomes. Therefore, the pathway from trust to buy-in 
(i.e., persuasion–identification–commitment) to engagement is 
a robust association that consistently existed with all 14 of the 
high-implementing college science instructors and their class-
rooms. This work reaffirms the significant role that instructors 
play in enhancing student engagement and outcomes (Fedesco 
et al., 2019; Snijders et al., 2020).

In the buy-in framework, the variable of trust plays an essen-
tial role in fostering student buy-in toward EBPs and raises the 
question as to what strategies instructors may use to build stu-
dent trust. Evidence from psychology and education research 
suggests a number of approaches to promote instructor–student 
trust relationships within the context of higher education, such 
as establishing an autonomy-supportive learning environment 
(Levesque-Bristol et al., 2020), implementing inclusive strate-
gies (Burgstahler, 2015), and having out-of-class communica-
tion (Elhay and Hershkovitz, 2019). A next step in line with the 
current research is to investigate the antecedents of student trust 
in their instructors within the context of college science EBPs.

LIMITATIONS AND FUTURE RESEARCH
The current study has several limitations we should note. First, 
this study focused on interpreting undergraduates’ learning 
experiences in STEM courses taught by faculty implementing 
EBPs with high frequency. While findings provide support for an 
explanatory buy-in framework of student effects in these envi-
ronments, questions remain as to the value of this framework in 
contexts where the implementation of EBPs is more variable. For 
example, future research should determine whether the buy-in 
framework holds if there is a more modest implementation of 
EBPs by a faculty member. Second, the framework tested here 
examines student buy-in, engagement, course performance, and 
persistence at a single time point toward the end of the semester 
across courses. Exploring the interplay among these variables 
within courses and over time would provide meaningful insight 
into the potential changes in the strength and direction of these 
relationships as they evolve over a semester. Third, although the 
findings of the current study possess the potential for generaliz-
ability due to the large and diverse sample of students, our data 

were mostly collected in biology courses in which 11 of the 14 
instructors were female. As such, the sample does not represent 
all STEM fields and potentially oversamples instructors along 
gender lines. It would be beneficial to replicate these results with 
data from other STEM fields. Fourth, although trust of instruc-
tors had been found to be significantly associated with students’ 
buy-in toward EBPs, the cross-sectional design used in this study 
precluded the possibility of demonstrating causal relationships 
between the variables. Students’ buy-in toward EBPs may have 
contributed to the increase in trust. Accordingly, future research-
ers may use other research designs, such as a longitudinal 
research design or a quasi-experimental pre- and posttest design, 
which could produce more reliable results. Finally, this study did 
not control for students’ prior exposure to EBPs, which may 
affect their current course experiences. Students’ self-reported 
levels of buy-in could be influenced by prior encounters with the 
targeted EBPs in other classrooms, influencing their attitudes 
either positively or negatively.

CONCLUSIONS
This study contributes to research on undergraduate STEM 
education by providing a framework that depicts how trust 
and growth mindset increase buy-in to EBPs, which posi-
tively influences student outcomes such as engagement in 
self-regulatory learning strategies, intent to persist in sci-
ence, and academic performance. This study tested a frame-
work of student buy-in among a multi-institutional sample of 
undergraduate science students that holds across diverse 
groups in terms of gender and race/ethnicity. These findings 
are among the first to detail students’ psychological pro-
cesses, particularly trust, that may impact academic perfor-
mance and science persistence. Through the lens of the stu-
dent buy-in framework, we suggest that just training science 
faculty how to teach in an evidence-based way is an import-
ant but insufficient pathway to attain increased student 
engagement and learning. Instructors should therefore strive 
to incorporate ways to gain students’ buy-in to how the 
course is being taught and students’ trust in their instructors 
for getting them through a course, especially for students 
who possess a lower growth mindset or who are from tradi-
tionally underrepresented groups.
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