
Postgre/PostGIS Tutorial
Spatial Relationships

Created by: Ricardo Oliveira

ricardo.oliveira@ucdenver.edu

Decem
ber 2014

PostGIS Tutorials 7. Spatial Relationships

 12/11/2014 2

 On the previous tutorial we explored how we can extract spatial data from a spe-
cific dataset, now we will learn how we extract spatial relationships from two different
datasets. This is a foundational step towards the spatial join process that will be ex-
plored on the next tutorial. On this tutorial we will explore three type of relationships:
Intersect, Contains, and Within.

 Intersects

 The intersect function checks the geometries of the data and return only the ones
that intersect each other, let’s see the example:

 We want to know which streets intersects the CBD neighborhoods. Here is the
query.

select s.name, n.nbrhd_name

from street_centerline as s, neighborhoods as n

where n.nbrhd_name = 'CBD' AND ST_Intersects(n.geom, s.geom)

 First things first, we want to know which streets intersects the CBD neighbor-
hood, therefore we want to display both names, did you notice the s. and n.? These
are aliases, the next line we inform the query that we want to check the relationships
of the street_centerline and neighborhoods tables, by using ‘as’ we give alias to our
tables, this save a few keystrokes and makes the query look better. When we want to
point our query to a given column on a given table we have to use the following struc-
ture: TABLE.TABLECOLUMN .

 The last row is about which function we will use. In this case we use the
ST_Intersects(geometry A, geometry B). The function will compare which features of
B intersects with A. and of course we have to inform which neighborhoods we want to
check, in this case CBD.

 Here is the result:

PostGIS Tutorials 7. Spatial Relationships

 12/11/2014 3

 Within

 The Contains function basically check if a given geometry is inside another bigger
geometry. Let’s check which lightrail stations are inside each neighborhood.

select l.name, n.nbrhd_name

from lightrailstations as l, neighborhoods as n

where ST_Within(l.geom, n.geom)

 Let’s see what this query did. We want to display both the station’s names and
the neighborhood’s names, so we have to inform this on the first line, just like we did
with our previous example. The difference now is that we are using the ST_Within func-
tions, this functions compares the geometries of the first with the geometries of the
second and returns the comparison. The final result is this:

 We can expand the functionality of our query by querying extra columns, let’s ask
the query to return the neighborhoods population as well.

select l.name, n.nbrhd_name, n.population

from lightrailstations as l, neighborhoods as n

where ST_Within(l.geom, n.geom)

order by n.population DESC

PostGIS Tutorials 7. Spatial Relationships

 12/11/2014 4

 This new query will return the population of each neighborhood and return it in a
descending order.

 Notice that now we are getting closer to gather all the tools that we need to ana-
lyze the relationship between the RTD’s light rail stations and the rest of the city of
Denver. There is one extra function that can be very useful in our analysis.

 Distance Within

 The distance within function is called by using ST_DWithin, this function will com-
pare geometry A and geometry B based on a distance input by the user. The generic
form of the function is, ST_DWithin(geometry A, geometry B, radius). Remember that
the radius must be informed using the same unit of measurement of the data being
used. Let’s check which neighborhoods are within one mile from all the lightrail stations
in Denver.

select st.name as station, n.nbrhd_name as neighborhoods

from neighborhoods as n, lightrailstations as st

where ST_DWithin(n.geom, st.geom, 5280)

order by station ASC

 On this query we created aliases for our tables and also for how the query should
return the results, we want our columns to make sense by calling them simply stations
and neighborhoods. Notice that the radios inside the function is in feet, that is because
our data is in state plane projection. Lastly we want the results to be displayed in as-
cending order just to improve the readability. The final result is this:

PostGIS Tutorials 7. Spatial Relationships

 12/11/2014 5

 We can use the ST_DWithin function to analyze the total population on those
neighborhoods within one mile from the stations. We just have to change a few things
on our query.

select st.name as station, sum(n.population) as population

from neighborhoods as n, lightrailstations as st

where ST_DWithin(n.geom, st.geom, 5280)

group by st.name

order by sum(n.population) ASC

 This time we just add the sum(n.population) part, which will return the population
sum within one mile from the stations. We have to aggregate the returning table by
name stations, and lastly we order our rows by population to facilitate our analysis. The
final result is:

PostGIS Tutorials 7. Spatial Relationships

 12/11/2014 6

 PostGIS offers many more spatial functions that can be used to analyze data, the
three functions presented here are just a glimpse of what can be done inside post-
greSQL . These functions should offer to you a pretty solid start but if you feel that you
need more tools check the postgis documentation at http://postgis.net/docs/
reference.html#Spatial_Relationships_Measurements for a look at different functions.

 On the next tutorial we will learn how to create new data from our analysis and
how to back-up our database.

http://postgis.net/docs/reference.html#Spatial_Relationships_Measurements
http://postgis.net/docs/reference.html#Spatial_Relationships_Measurements

