The goal of the current study was to begin to investigate the role of dopamine signaling in the DMS and DLS in fear extinction and renewal.

Methods

- **Experiments 1 and 2:** A GABA	extsubscript{A}/GABA	extsubscript{B} agonist drug cocktail (0.03/0.3 nmol/μl Muscimol/Baclofen) was injected bilaterally into the DMS or DLS.
- **Experiment 3:** A D1 antagonist, SCH-233965 (1.0 μg/μl), was injected bilaterally into the DMS.

Hypothesis

- Inhibition of the DMS will increase the reliance on the habit learning strategy involving the DLS, thereby rendering fear extinction resistant to fear renewal.

Goal

To investigate the role of the DMS in fear extinction.

Experiment 1

Goal

To investigate the role of the DLS in fear extinction.

Hypothesis

Inhibition of the DLS will increase reliance on the goal-directed learning strategy involving the DMS, thereby enhancing fear extinction in a context-dependent manner.

Experiment 2

Goal

To investigate the role of D1 signaling in the DMS and DLS in fear extinction.

Hypothesis

Based on our prior work, blocking D1 signaling in the DMS will impair fear extinction memory.

Experiment 3

Goal

D1 receptor signaling in the DMS, but not DLS (not shown) contributes to fear extinction learning.

Results

Fear extinction supported by the DLS (DMS inactivation) is resistant to renewal

Results

Fear extinction supported by the DMS (DLS inactivation) is strengthened but remains context-dependent

Results

D1 receptor signaling in the DMS, but not DLS (not shown) contributes to fear extinction learning

Conclusions

- Fear extinction learning supported by DLS, habit strategies (DMS inactivation) is resistant to fear renewal, whereas fear extinction learning supported by DMS, goal-directed strategies (DLS inactivation) improves extinction retention, but the extinction memory remains context-dependent.
- D1 receptor signaling in the DMS contributes to the role of the DMS in supporting fear extinction, but mechanisms other than D1 receptor signaling contribute to the role of the DLS.
- Results suggest that substantia nigra activation enhances extinction memory through D1 signaling in the DMS and renders the extinction memory resistant to renewal through a D1-receptor independent mechanism in the DLS.