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Abstract

Physical activity can enhance cognitive function and increase resistance against deleterious effects

of stress on mental health. Enhanced cognitive function and stress resistance produced by exercise

are conserved among vertebrates, suggesting that ubiquitous mechanisms may underlie beneficial ef-

fects of exercise. In the current review, we summarize the beneficial effects of exercise on cognitive

function and stress resistance and discuss central and peripheral signaling factors that may be critical

for conferring the effects of physical activity to brain circuits involved in cognitive function and stress.

Additionally, it is suggested that norepinephrine and serotonin, highly conserved monoamines that

are sensitive to exercise and able to modulate behavior in multiple species, could represent a conver-

gence between peripheral and central exercise signals that mediate the beneficial effects of exercise.

Finally, we offer the novel hypothesis that thermoregulation during exercise could contribute to the

emotional effects of exercise by activating a subset of temperature-sensitive serotonergic neurons in

the dorsal raphe nucleus that convey anxiolytic and stress-protective signals to forebrain regions.

Throughout the review, we discuss limitations to current approaches and offer strategies for future re-

search in exercise neuroscience.

Key words: anxiety, norepinephrine, physical activity, serotonin, wheel running.

Introduction

It is now well established that the physical activity status of the or-

ganism impacts the structure and function of the nervous system, re-

sulting in changes in associated behaviors (Cotman et al. 2007;

Kramer & Erickson 2007; Gomez-Pinilla & Hillman 2013; Morgan

et al. 2015). Physical activity status refers to the degree to which an

organism engages in regular physical activity behaviors, whether

these are for survival, fitness, or fun. Risk factors for a sedentary

lifestyle are well documented, as are beneficial effects of regular

physical activity. Taking center stage among the beneficial effects

of physical activity are an enhancement of cognitive functions and

an increase in stress resistance. In the current review, we will draw

from data obtained from a variety of vertebrates to briefly

summarize the benefits of physical activity on cognitive function

and stress resistance. Next, we will discuss signaling factors

potentially involved in communicating the effects of exercise to the

nervous system. Signaling factors considered will be both those initi-

ated from the periphery during exercise, as well those originating

from within the brain itself. Finally, we will summarize data consist-

ent with the hypothesis that the monoamines norepinephrine (NE)

and serotonin (5-HT) are a key point of convergence of peripheral

and central signaling factors and are thus intimately involved in

the mechanisms by which exercise enhances cognitive function and

increases stress resistance.
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Exercise Enhances Cognitive Function: Role of
Growth Factors

The beneficial effects of physical activity on cognitive function have

been extensively reviewed (Kramer & Erickson 2007; Gomez-Pinilla

& Hillman 2013; Cassilhas et al. 2015; Fischer 2015; Hamilton &

Rhodes 2015; Prakash et al. 2015). Physical activity can impact a

wide variety of cognitive and learning processes including executive

control (Hillman et al.2003; Hillman et al. 2014), attentional pro-

cessing (Budde et al. 2008; Medina et al. 2010), and spatial memory

(Cassilhas et al. 2015). Although exercise is able to impact cognitive

function in healthy individuals, physical activity is most beneficial in

clinical populations. For example, physical activity can slow the

cognitive decline associated with age (Kramer et al. 2006; Scherder

et al. 2014), Alzheimer’s disease (Yang & Coote 1998), Parkinson’s

disease (Murray et al. 2014; David et al. 2015), and after traumatic

brain injury (Szabo 1994; Griesbach et al. 2009). Cognitive benefits

of physical activity appear to be conserved in vertebrates and, in

addition to humans, have been reported in nonhuman primates

(Rhyu et al. 2010), rodents (van Praag et al. 1999a; Griffin et al.

2009), and zebra fish (Luchiari & Chacon 2013).

Exercise elicits structural plasticity in a wide variety of brain re-

gions related to cognitive functions (Morgan et al. 2015). In the

hippocampus, for example, exercise increases angiogenesis (Van der

Borght et al. 2009), dendritic complexity (Redila & Christie 2006;

Shih et al. 2013), spine density (Eadie et al. 2005), volume (Thomas

et al. 2015), and adult neurogenesis (van Praag et al. 1999b; van

Praag 2008). Growth factors seem to be especially important for

mediating the cognitive and structural plasticity after exercise.

Exercise increases circulating insulin-like growth factor-1 (IGF-1;

Llorens-Martin et al. 2010), vascular endothelial growth factor

(VEGF; Schobersberger et al. 2000), and brain-derived neurotropic

factor (BDNF; Coelho et al. 2013; but see Maass et al. 2015). These

circulating growth factors can influence the brain directly (Carro

et al. 2000). Indeed, several studies report that circulating BDNF

(Trejo et al. 2001; Trejo et al. 2008) or IGF-1 (Duman et al. 2009)

are important for the increase in neurogenesis and the antidepressant

effects of exercise in animal models. Exercise also increases the syn-

thesis of growth factors within the brain, including the hippocampus,

cortex, and amygdala (Neeper et al. 1995; Neeper et al. 1996;

Gomez-Pinilla et al. 1997; Ding et al. 2006; Greenwood et al. 2009).

Blocking the function of BDNF with intra-hippocampal administra-

tion of an immunoadhesin chimera (TrkB-IgG) that mimics the

BDNF receptor, TrkB, to selectively bind BDNF has been reported to

prevent the enhancement of cognitive function produced by exercise

in rats (Vaynman et al. 2004; Gomez-Pinilla et al. 2008). BDNF could

also contribute to the increase in synaptic plasticity and neurogenesis

noted after exercise (Poo 2001; Gomez-Pinilla et al. 2008; Ding et al.

2011; Park & Poo 2013), which together could contribute to benefi-

cial effects of exercise (Bjornebekk et al. 2005; Clark et al. 2008;

Duman et al. 2008; Marais et al. 2009; Fuss et al. 2010; Voss et al.

2013). Consistent with the rodent data are reports that humans

with a prominent single-nucleotide polymorphism on the BDNF gene

(BDNF Val66Met) display impaired learning and memory (Brooks

et al. 2014; Montag et al. 2014). One particularly interesting poten-

tial role of adult hippocampal neurogenesis is the clearance of old

memories in order to make way for new learning (Frankland et al.

2013). Akers et al. (2014) reported that mice allowed voluntary ac-

cess to running wheels for 6 weeks after learning of contextual fear

conditioning showed markedly weaker memory of the conditioning

context compared with sedentary mice, and this forgetting was

dependent on the formation of new cells in the hippocampus (Akers

et al. 2014). However, exercise-induced neurogenesis might elicit for-

getting only under specific learning conditions. Greenwood et al.

(2009) observed no evidence of exercise-induced loss of fear memo-

ries using a contextual fear conditioning protocol that resulted in high

levels of fear in adult rats (Greenwood et al. 2009). Moreover,

Mustroph et al. (2015) found that adult hippocampal neurogenesis

was not necessary for wheel running to abolish the memory for co-

caine conditioned place preference in mice (Mustroph et al. 2015).

Importantly, facilitation of adult neurogenesis and memory

benefits from exercise seems to be conserved across vertebrate taxa.

Zebra fish exercise trained by swimming against a current, for

example, demonstrates enhanced learning of appetitive Pavlovian

conditioning (Luchiari & Chacon 2013). European Starling bird

exercise trained in a wind tunnel that mimics the birds’ natural flight

were reported to display enhanced neuronal recruitment in the telen-

cephalon, which houses the birds’ cerebral cortex, amygdala, and

hippocampus, during flight compared with another group of birds

that were not trained. The enhanced neuronal recruitment in the

trained group was paralleled by an increase in neurogenesis in the

telencephalon, as revealed by doublecortin immunohistochemistry

(Hall et al. 2014). These data suggest that the increase in adult

neurogenesis and associated memory benefits may be a conserved ef-

fect of exercise in vertebrates. To our knowledge, the effects of exer-

cise on neural models of learning and memory in invertebrates have

not been investigated. The characterization of an effective exercise

training paradigm in Drosophila (Tinkerhess et al. 2012a) could

provide convenient means with which to investigate the genetic

and molecular mechanisms underlying the effects of exercise on

learning. In fact, several weeks of exercise training slowed the age-

related decline in climbing performance in Drosphila, an effect that

was dependent on the presence of spargel, the invertebrate homolog

of the vertebrate transcriptional co-activator PPAR-c co-activator-

1a (PGC-1a; Tinkerhess et al. 2012b). This is especially interesting

considering that muscle PGC-1a drives the expression of a newly

identified myokine, FNDC5 (Irisin; Bostrom et al. 2012), which has

been reported to mediate the increase in hippocampal BDNF after

exercise in mice (Wrann et al. 2013).

Exercise Increases Stress Resistance

In addition to enhancing cognitive function and learning and mem-

ory processes, physical activity is also well known to confer protec-

tion against deleterious effects of stress. The stress-buffering effects

of exercise can be observed in a wide variety of stress responsive sys-

tems, including oxidative stress (Ozbeyli et al. 2015), attenuation of

mild stress-induced increases in hypothalamic–pituitary–adrenal

(HPA) axis activity (Droste et al. 2006; Greenwood et al. 2008;

Campeau et al. 2010), facilitation of habituation of the sympathetic

nervous system (Masini et al. 2005) and HPA axis (Sasse et al. 2008;

Sasse et al. 2013) response to chronic stress, modulation of stress-

induced monoaminergic signaling (Dishman 1997a; Dishman et al.

1997; Greenwood et al. 2003a; Greenwood et al. 2003b; Clark

et al. 2015), and reduction in incidence and severity of stress-related

psychiatric disorders such as depression (Babyak et al. 2000;

Blumenthal et al. 2012), anxiety (Herring et al. 2010; Asmundson

et al. 2013; Stonerock et al. 2015), and post-traumatic stress dis-

order (Newman & Motta 2007; Powers et al. 2015).

Interestingly, like the enhancement of cognitive function, exercise-

induced stress resistance is conserved in vertebrates. For example, rats
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allowed voluntary access to running wheels for 6 weeks are protected

against stress-induced elevations in HPA axis activity (Droste et al.

2006; Greenwood et al. 2008; Campeau et al. 2010) and depression-

and anxiety-like behavioral effects of exposure to a variety of labora-

tory stressors (reviewed in Greenwood & Fleshner 2011). Chronically

trained rainbow trout displayed an attenuation of the stress hormone

cortisol in response to an acute bout of forced exercise compared with

their untrained counterparts (Hernandez et al. 2002). Additionally,

interval-trained Atlantic salmon displayed enhanced survival and atte-

nuated cardiac pro-inflammatory cytokine response to a viral challenge

(Castro et al. 2011). There is also evidence that the anxiolytic effect

of exercise extends to fish. Mosquito fish exercise trained for 28 days

by placement in a water tank with a constant current demonstrated be-

havioral changes consistent with an anxiolytic effect. Compared with

untrained fish, trained fish displayed greater exploratory behavior in

a novel context and had a reduced latency to leave a familiar

refuge (Sinclair 2014). These data suggest that increasing physical

activity status of the organism ubiquitously reduces consequences of

stress across vertebrate taxa, although more work needs to be done to

characterize the different species that can benefit from exercise.

One issue that arises when investigating the effects of exercise on

brain and behavior is the ability to differentiate exercise effects from

those of environmental enrichment. Including a wheel in a rat’s

cage, for example, provides an object on which the rat can climb

and explore, and complex enriched housing environments engage

cognitive processes and can initiate structural plasticity, enhance

cognitive function, and increase stress resilience (Comery et al.

1995; Fan et al. 2007; Markham et al. 2009; Veena et al. 2009a,

2009b; Fischer 2015; Grimberg-Henrici et al. 2015; Hullinger et al.

2015; Ji et al. 2015; Novkovic et al. 2015). Many of the studies re-

porting beneficial effects of enriched environments, however, have

included running wheels as part of the enriched housing. Recent

work attempting to differentiate the effects of running from complex

environmental enrichment have shown that at least some of the ef-

fects of long-term exercise in rodents are above and beyond those

produced by environmental enrichment alone (Nyhuis et al. 2010;

Kobilo et al. 2011; Mustroph et al. 2012). Thus, although cognitive

engagement is certainly part of the exercise stimulus, and enriched

environments that engage cognitive processes can certainly benefit

brain plasticity and behavior, at least some of the effects of exercise

are independent from these enrichment factors. An important

goal of future studies should be to determine the role of cognitive en-

gagement in the beneficial effects of exercise.

Potential Signals Responsible for Conveying the
Effects of Exercise to Neural Circuits Involved in
Cognitive Function and Stress

Data elucidating the intracellular signaling pathways, neurotransmit-

ter systems, and means of synaptic plasticity that are sensitive to

physical activity are rapidly emerging. However, a critical unanswered

question is how the experience of exercise is communicated to the

brain to result in altered neural activity, gene expression, or synaptic

plasticity required for the observed behavioral effects of exercise.

Indeed, the National Institutes of Health recently implemented a

Common Fund with the goal of identifying these signals in exercising

humans (http://commonfund.nih.gov/MolecularTransducers). We will

refer to these potential means of exercise-to-brain communication sim-

ply as exercise signals. Exercise signals could originate from 2 sources:

from the periphery or from within the central nervous system. Signals

derived from the periphery could include activity of afferent nerves or

factors released from working muscle, among other factors (Figure 1).

These signals would communicate with the brain in a “bottom-up”

fashion, whereas central factors, such as psychological processes re-

cruited during physical activity including learning exercise routines,

choosing to exercise, exercise reward, or an increase in central arousal

(Figure 1), would signal in a “top-down” manner. Exercise signals

that could be involved in the effects of physical activity on adult neuro-

genesis in the hippocampus have been recently reviewed (Bolijn 2015).

Some of these signals, as well as others that could be important for

conferring the broad effects of physical activity on cognitive function

and stress resistance, are shown in Figure 1.

Monoamines as Signaling Factors

Considering the array of behaviors and brain areas impacted by

physical activity, and that many effects of physical activity seem to

be conserved across the animal kingdom, it is possible that exercise

signals derived from various sources could converge on a common

target within the central nervous system that could then at least

partly contribute to the wide variety of neural and behavioral

changes elicited by exercise. Of these signals, monoamines such as

dopamine (DA), NE, and 5-HT represent likely candidates. The cur-

rent review focuses on NE and 5-HT because the majority of work

focuses on these monoamines. Discussions on the potential role of

DA can be found elsewhere (Knab & Lightfoot 2010; Greenwood

et al. 2011; Monteiro-Junior et al. 2015). Consistent with a role

for monoamines as exercise signals are the facts that monoamines: 1)

are highly conserved, 2) innervate brain regions involved in cognitive

function and stress from their metencephalic and mesencephalic ori-

gins, 3) have long been implicated in memory modulation and behav-

ioral responses to stress, 4) are known to be sensitive to the physical

activity status of the organism, and 5) respond to many of the exercise

signals listed in Figure 1. The following sections will consider the in-

volvement of NE and 5-HT in the behavioral effects of physical activ-

ity. Central to this theme is the idea that NE and 5-HT could represent

key points of convergence between bottom-up and top-down signaling

factors involved in communicating the experience of exercise to the

brain circuits involved in cognitive processes and stress (Figure 1).

Role of NE in Cognitive Benefits of Exercise

Rodent models provide a convenient tool with which to study the

mechanisms underlying the beneficial effects of exercise on behav-

ior. Rodent studies investigating the effects of exercise on cognitive

function have been hyperfocused on learning processes supported by

the hippocampus. This attention to the hippocampus makes sense

considering that hippocampus-dependent memory is readily assessed

in rats and mice, and some of the most commonly observed effects

of exercise are an increase in growth factors and birth of new

neurons in the adult hippocampus. The hippocampus is thought

to be important for learning and memory of contextual and spatial

information (Rudy et al. 2002), as well as declarative memory.

Interestingly, exercise-induced improvements in hippocampal func-

tion seem to be independent of exercise controllability: both forced

treadmill training (Albeck et al. 2006; Griffin et al. 2009; Li et al.

2013; Inoue et al. 2015) or swimming (Chae et al. 2012), as well as

voluntary access to running wheels (Merrill 1993; van Praag et al.

1999a; Vaynman et al. 2004; Greenwood et al. 2009), have been re-

ported to enhance some types of memory. For this reason, exercise

signals responsible for the effects of exercise on hippocampal func-

tion could be insensitive to the top-down signaling factor of exercise
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controllability. Along with peripheral signaling factors released

from muscle, central NE would likely be insensitive to the control-

lability of exercise, as NE neurons in the locus coeruleus (LC) are

thought to be important for arousal, attention, and mood (Sara &

Bouret 2012); states likely impacted by voluntary as well as forced

exercise. This does not imply that all effects of exercise are insensi-

tive to the type or controllability of exercise employed. Treadmill

training, for example, fails to prevent stress-induced deficits in goal-

directed learning thought to depend on the striatum (Greenwood

et al. 2013).

Increases in neurogenesis and plasticity factors such as BDNF in

the hippocampus are thought to be critical to the cognitive benefits

of exercise (Cotman et al. 2007). Interestingly, similar to the benefits

to hippocampal function, increases in BDNF and neurogenesis in

the hippocampus are insensitive to exercise controllability. Both vol-

untary wheel running (Neeper et al. 1995; Oliff et al. 1998;

Greenwood et al. 2009), forced wheel running (Leasure & Jones

2008), and forced treadmill training (Griffin et al. 2009; Kim et al.

2015) increase plasticity factors including BDNF in the hippocam-

pus. Increases in circulating factors could be important for

these hippocampal changes after exercise, and this possibility has

been recently reviewed (Bolijn 2015). Often overlooked, however, is

the contribution of NE to the hippocampal and cognitive effects of

exercise (discussed previously in Greenwood & Fleshner 2013).

It is possible that the increase in plasticity factors could influence

neural and behavioral effects of exercise by eliciting plastic changes in

NE systems. BDNF, for example, has been shown to contribute to LC

noradrenergic neuronal plasticity during development (Holm et al.

2003), aging (Matsunaga et al. 2006; Nakai et al. 2006), and in re-

sponse to specific signals such as opioids that could be recruited dur-

ing exercise (Akbarian et al. 2002). Repeated activation of NE

systems during exercise could also directly influence plasticity factors.

Prior work indicates that central NE systems (Dunn & Dishman

1991; Dunn 1996a; Dunn 1996b) including LC NE neurons

(Greenwood & Fleshner 2013) are activated by exercise, and there

are a variety of neuroplastic changes that occur in the NE system with

chronic exercise that are consistent with repeated NE activation

(Brown & Van Huss 1973; Ostman & Nyback 1976; Brown et al.

1979; Dishman 1997b; a; Dishman et al. 1997; Dishman et al. 2000).

The LC receives input from autonomic regions of the medullary re-

ticular formation and the nucleus of the solitary tract (NTS; Aston-

Jones et al. 1991), as well as a recently identified dense projection

from the cerebellum (Schwarz et al. 2015). These inputs suggest that

the LC could be a site of integration between afferent information re-

garding medullary autonomic reflexes, including from the sensory

vagus nerve relayed from the NTS, with motor information from the

cerebellum. Thus, several bottom-up or top-down exercise signaling

mechanisms could converge on LC NE activity, which would then

Figure 1. NE and 5-HT neurons of the locus coeruleus and dorsal raphe nucleus are a site of convergence of central (top-down) and peripheral (bottom-up) signals

conveying the experience of exercise to brain circuits involved in cognition, stress, and emotional behavior.
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function to facilitate sensory gating, focus attention, or improve learn-

ing during exercise.

Of particular note is that activation of the LC via the vagus nerve

could be a pathway through which circulating cytokines (Goehler et al.

2000; Guyon et al. 2008; Pedersen & Febbraio 2008) or products from

optimized gut microbiota (Mika & Fleshner 2015; Mika et al. 2015b)

signal the brain during exercise. Consistent with a role for gut micro-

biota are recent data reporting that wheel running can increase the

abundance of beneficial microbial species in the rat gut, especially

during early life (Mika & Fleshner 2015; Mika et al. 2015b). These

microbes include Lactobacillus and Anaerostipes species that can

release a variety of products including cytokines, neurotransmitters,

and single chain fatty acids, which could communicate with the brain

through vagal afferent signaling. Central 5-HT systems could be an

additional central target of vagal nerve-mediated NE activity through a

mechanism involving a1b-adrenergic receptor (ADR) located on raphe

5-HT neurons (Day et al. 2004). Indeed, repeated stimulation of the

vagus nerve activates 5-HT neurons in the dorsal raphe nucleus (DRN;

Manta et al. 2009) and elicits increases in extracellular levels of both

NE and 5-HT in the hippocampus and cortex (Manta et al. 2013).

Increases in NE release could influence learning and cognitive

function by initiating plasticity in target regions of the LC. For

example, b-ADRs are linked to the transcription of BDNF through

adenosine 3’, 5’-monophosphate (cAMP)-dependent protein kinase

(PKA)-induced phosphorylation of cAMP response element-binding

protein (CREB; (Conti et al. 2002)). Most importantly, the increase

in hippocampal BDNF after exercise has been shown to be depend-

ent on central noradrenergic signaling. Blockade of either CREB

(Chen & Russo-Neustadt 2009) or b-ADRs (Ivy et al. 2003) pre-

vents the exercise-induced increase in BDNF and the improved con-

textual memory typically observed after 6 weeks of wheel running

(Van Hoomissen et al. 2004). Additionally, Garcia et al. (2003) re-

ported that N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-

4) lesions of the LC reduces BDNF mRNA in the hippocampus of

exercised rats to a level equivalent to sedentary rats, which are un-

affected by DSP-4 lesions (Garcia et al. 2003). This potential role of

NE in exercise-induced plasticity and cognitive enhancement is simi-

lar to the suggested contribution of noradrenergic signaling to the

increase in BDNF after administration of chronic antidepressants

(Duman & Monteggia 2006).

NE could contribute to other benefits of exercise in addition

to initiating neural plasticity in the hippocampus. LC NE neurons also

project to the prefrontal cortex and amygdala. NE in these regions

could contribute to modulation of attention and executive function

(Berridge & Spencer 2015), as well as emotional behavior. For

example, acute wheel running in close proximity to the acquisition

phase of fear extinction enhances fear extinction memory (Siette et al.

2014) and reduces the relapse of conditioned fear responding after

extinction (Mika et al. 2015a). NE has similar effects. Infusion of the

mixed b-ADR agonist isoproterenol directly into the medial prefrontal

cortex (PFC), including the infralimbic region, immediately before

acquisition of contextual fear extinction enhances the learning and

retention of contextual fear extinction (Do-Monte et al. 2010).

Microinfusions of NE into the basolateral amygdala immediately after

extinction of contextual fear enhance the consolidation of fear extinc-

tion memory (Berlau & McGaugh 2006). Given that exercise acti-

vates LC NE neurons, these data suggest that NE could contribute to

the facilitation of fear extinction produced by acute exercise.

However, it is unlikely that NE is solely responsible, as NE agonists

seem to only enhance the recall of fear extinction memory if memory

testing occurs in the context in which fear extinction learning

occurred (Morris & Bouton 2007). In contrast, exercise during the

acquisition of fear extinction prevents the relapse of fear in novel

contexts (Mika et al. 2015a). Nevertheless, LC NE systems could

contribute to a variety of neuroplastic, cognitive, and emotional

effects of exercise. Related to this idea are data demonstrating that

galanin, a neuropeptide co-expressed with NE in LC neurons,

contributes to anxiolytic and stress-protective effects of exercise

(Sciolino & Holmes 2012; Sciolino et al. 2015).

Central 5-HT Systems and Exercise-Induced
Stress Resistance

In addition to NE, 5-HT has been implicated in contributing to the

beneficial effects of exercise on brain function and behavior.

Research has focused on changes in central 5-HT systems after exer-

cise, and how these changes could contribute to antidepressant,

anxiolytic, and stress-buffering effects of exercise (reviewed in

Dishman 1997a; Greenwood & Fleshner 2011). The 5-HT system

displays alterations in gene expression and functional activity after

an increase in physical activity in animals as diverse as humans and

lizards. The changes in 5-HT systems after exercise include adapta-

tions both within cell body regions in raphe nuclei (Greenwood

et al. 2003a, 2005b; Loughridge et al. 2013) as well as adaptations

in raphe target regions involved in regulating specific behaviors

(Chaouloff 1994; Dishman et al. 1997; Greenwood et al. 2012;

Christianson & Greenwood 2014). It should be mentioned that

prior work investigating the effects of forced exercise such as tread-

mill training on central 5-HT systems should be interpreted with

caution. Specific 5-HT systems are quite sensitive to stress (described

below), and treadmill training can be a potent stressor (Brown et al.

2007) that produces inconsistent results in animal models of stress-

related disorders (Burghardt et al. 2004; Greenwood et al. 2013;

Hong et al. 2015; Kim et al. 2015). There is recent evidence that the

stressor intensity of the treadmill training protocol could contribute

to the divergent effects of treadmill training on stress-resistance and

emotional behavior. Otsuka et al. (2015) ran rats on a treadmill for

30 min at varying intensities. Only low-intensity training reduced

anxiety- and depression-like behavior in the elevated plus maze and

forced swim test, respectively. High-intensity treadmill running acti-

vated the HPA axis as indicated by cFos expression in corticotropin

releasing factor-containing neurons in the hypothalamus, and did

not alter behavior (Otsuka et al. 2015). Another recent study re-

ported that although both high and low intensity forced treadmill

training increased dentate gyrus volume and cell proliferation, high-

intensity exercise increased circulating corticosterone, whereas only

low-intensity treadmill training increased the survival of the newly

born neurons (Inoue et al. 2015).

In the remainder of the current review, we briefly summarize

prior work on the effects of exercise on 5-HT systems, add discus-

sion of new data, and consider the signals by which exercise could

communicate with central 5-HT systems. In particular, we discuss

data suggesting that thermoregulation could be an important factor

signaling the experience of exercise to the central 5-HT system.

Populations of 5-HT Neurons Differ in Their Roles
in Stress and Emotional Behavior

The majority of 5-HT innervating the forebrain in vertebrates originate

in the midbrain DRN. The role of DRN 5-HT neurons in behavioral

responses to stress and emotional behavior has been extensively
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investigated (Graeff et al. 1996; Clark & Neumaier 2001; Lowry et al.

2005; Maier & Watkins 2005; Richardson-Jones et al. 2010; Paul &

Lowry 2013; Paul et al. 2014). One theme that emerges from this work

is that 5-HT neurons in the DRN are heterogeneous in terms of recep-

tor expression, projection sites, and roles in emotional behavior (Figure

2). For example, subsets of DRN 5-HT neurons located in the rodent

dorsal and ventral aspects of the mid-DRN, and in the dorsal aspect of

the caudal DRN, seem to contribute to the development of anxiety and

depression after stress (Lowry et al. 2008). Within this stress-promoting

region of the DRN are 5-HT neurons projecting to the basolateral

amygdala and dorsal striatum (Commons et al. 2003; Hale et al. 2008,

2012), structures critical for processing fear- and anxiety-related stimuli

(LeDoux 2003) and goal-directed learning (Yin et al. 2005),

respectively; and in which 5-HT can elicit anxiety and deficits in goal-

directed learning through a mechanism involving 5-HT2CR

(Christianson et al. 2010; Strong et al. 2011; Greenwood et al. 2012;

Christianson & Greenwood 2014). Consistent with a role for subsets

of DRN 5-HT neurons promoting stress and anxiety are the

observations that exposure to diverse anxiety-eliciting drugs (Abrams

et al. 2005; Lawther et al. 2015), social defeat (Gardner et al. 2005),

an anxiogenic open-field (Hale et al. 2008), or uncontrollable stress

(Grahn 1999; Greenwood et al. 2003a), all potently and selectively

activate 5-HT neurons in these stress-promoting DRN subregions.

Moreover, controllable stress, which does not produce anxiety and in

fact leads to protection against future uncontrollable stressors, inhibits

activity of these stress-promoting DRN 5-HT subsets (Amat et al.

2005, 2010).

In contrast to the stress-promoting DRN 5-HT neurons, 5-HT

neurons located in the ventrolateral and interfascicular regions of

the DRN are implicated in inhibition of panic, enhanced stress cop-

ing, and anxiolytic responses (Figure 2; Hale et al. 2012, 2013; Paul

& Lowry 2013; Paul et al. 2014). These 5-HT neurons project

heavily to the hippocampus, medial septum, and regions of the

prefrontal cortex thought to be dysregulated in depressed subjects

(Drevets 2000). The idea that distinct 5-HT systems modulate

affective state, whereby one promotes anxiety and depression and

the other stress coping, allows the possibility that disruption in ei-

ther system (i.e., hyperactivity of the stress-promoting region or

hypoactivity of the stress-protective region) could lead to stress-

related disorders. Indeed, this dual role of 5-HT in emotional

behavior could explain discrepancies in the literature regarding the

role of 5-HT in depression.

Exercise Shifts Activity of Stress-Responsive
5-HT Systems from Stress-Promoting to
Stress-Protective

Given the potential dual role of DRN 5-HT neurons in emotional and

stress-related behaviors, it is possible that exercise could promote stress

resistance by either attenuating activity of stress-promoting 5-HT sys-

tems and/or increasing activation of stress-protective 5-HT systems.

There is evidence that exercise does both. Six weeks of voluntary wheel

running attenuates the number of DRN 5-HT neurons expressing the

neural activity marker c-Fos after acute exposure to an uncontrollable

stressor (Greenwood et al. 2003a). The most robust effect of exercise

was observed in the dorsal and ventral regions of the rostral—mid

DRN; those same regions implicated in promoting anxiety and deleteri-

ous behavioral effects of stress. Exposure to the same acute stressor po-

tentiates 5-HT efflux in the dorsal striatum in response to subsequent

exposure to mild stress, which can interfere with goal-directed learning

through a mechanism involving 5-HT2CR (Strong et al. 2011). Six

weeks of voluntary wheel running also prevented the stress-induced

exaggerated 5-HT efflux in the dorsal striatum (Clark et al. 2015) and

the corresponding deficits in goal-directed escape learning (Greenwood

et al. 2003a).

Interestingly, constraint over activation of stress-responsive 5-HT

systems after exercise was also observed in male Anolis carolinensis

lizards. Acute restraint stress increased the 5HIAA/5-HT ratio in the

striatum and nucleus accumbens, indicative of high 5-HT activity in

Figure 2. Dual role of DRN serotonergic (5-HT) neurons in stress and emotional behavior. (A) Cartoon of the rat midbrain modified from the Rat Brain Atlas in

Stereotaxic Coordinates (Paxinos, 1998) with the location of the DRN highlighted. (B) Coronal sections of the rat DRN showing expression of tryptophan hydroxy-

lase 2 mRNA labeled with in situ hybridization at rostral, mid, and caudal DRN levels. (C) Cartoon depicting a simplified version of subpopulations of DRN 5-HT

neurons involved, in general, in the promotion of stress and anxiety behaviors (stress-promoting DRN 5-HT neurons; red), or in stress coping and anxiolytic ef-

fects (stress-protective DRN 5-HT neurons; blue). Exercise constrains activation of stress-promoting DRN 5-HT neurons and activates stress-protective DRN 5-HT

neurons. DRD, dorsal aspect of the DRN; DRV, ventral aspect of the DRN; DRVL, ventrolateral aspect of the DRN; DRC, caudal aspect of the DRN; DRI, intrafascicu-

lar region of the DRN.
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these regions. Acute exercise reversed this stress-induced 5-HT activ-

ity (Emerson et al. 2000). It makes sense that constraint over activ-

ity of striatum-projecting 5-HT neurons would be a conserved

exercise adaptation. Serotonin in discrete brain regions including the

striatum is thought to contribute to the initiation of central fatigue

during exercise (Bailey et al. 1992; 1993b; Davis & Bailey 1997), per-

haps by reducing DA efflux required to maintain motor activity (De

Deurwaerdere et al. 2004). Thus, in addition to protection against

deleterious emotional effects of stress, the development of constraint

over activation of stress- and fatigue-promoting DRN 5-HT systems

after chronic exercise could serve to delay the onset of fatigue during

intense exercise bouts, a common training effect.

Exercise not only results in dynamic changes in serotonergic re-

sponses to stress, it also produces static changes in gene expression

within cell body regions and terminal sites of central 5-HT circuits.

Indeed, a microarray analysis indicated that voluntary wheel running

dramatically alters gene expression within laser-captured neurons of

the stress- and anxiety-promoting region of the DRN (Loughridge

et al. 2013). One of the DRN genes that increases in expression after

exercise is the gene coding for the 5-HT1A inhibitory autoreceptor

(Loughridge et al. 2013). Notably, the increase in 5-HT1A mRNA

occurs in the same region of the DRN showing the biggest attenuation

in activity after stressor exposure in physically active rats (Greenwood

et al. 2003a, 2005b), and in a time course consistent with the protective

effect of exercise against stress-induced anxiety- and depression-like be-

haviors (Greenwood et al. 2005a). Because 5-HT1A mRNA is almost

exclusively co-localized with 5-HT transporter mRNA in the DRN

(Day et al. 2004), and wheel running attenuates activity of DRN 5-HT

neurons in the stress-promoting DRN, it is a reasonable assumption

that the difference in 5-HT1A mRNA in the DRN produced by exercise

results in a functional increase in 5-HT1A autoreceptors. An increase in

5-HT1A-mediated autoinhibition is one mechanism by which exercise

could lead to constraint over activity of stress-promoting DRN 5-HT

neurons during exposure to stress.

Exercise also alters expression of 5-HT-related genes in terminal

regions of the DRN. For example, 6 weeks of voluntary wheel running

reduces 5-HT2CR mRNA in the dorsal striatum and amygdala

(Greenwood et al. 2012). Adaptation in these regions could be particu-

larly important for effects of exercise on emotional behavior. Thus,

exercise seems to produce protection against the stress-promoting

effects of 5-HT at multiple levels: one being within the DRN through

constraint of neural activity, and another being resistance to the effects

of 5-HT through downregulation of post-synaptic receptors.

Consistent with this idea are the observations that wheel running

produces resistance to the depression- and anxiety-like behaviors

elicited by microinjection of a 5-HT2CR agonist directly into the dorsal

striatum or amygdala (Greenwood et al. 2012), as well as by rapid in-

creases in extracellular 5-HT elicited by acute systemic administration

of a selective 5-HT reuptake-inhibitor (Greenwood et al. 2008).

Constraint over stress-induced 5-HT signaling, particularly at 5-

HT2 receptors, could not only be an important contributor to the

stress-buffering effects of exercise on emotional behavior, but could

also contribute to memory-boosting effects of exercise in the face of

stress. In addition to interfering with goal-directed learning through

a serotonergic mechanism in the striatum (Strong et al. 2011), stress

can damage hippocampal circuits leading to memory impairments

(McEwen et al. 2015). Although whether beneficial effects of exer-

cise extend to protection against stress-induced memory impair-

ments is still an active area of inquiry, several observations suggest

that it would. First, exercise can prevent the hippocampal-dependent

memory impairments and amnesia produced by acute or chronic

stress (Fleshner et al. 2014; Patki et al. 2014). Second, exercise pre-

vents reductions in hippocampal BDNF mRNA and protein pro-

duced by exposure to a severe acute stressor (Adlard & Cotman

2004; Greenwood et al. 2007). Unlike the effect of NE on BDNF

which is stimulatory, the effects of 5-HT on BDNF are mixed.

Consistent with divergent behavioral effects of different subpopula-

tions of 5-HT neurons is the observation that 5-HT seems to

have opposing effects on BDNF mRNA in different brain regions.

For example, although 5-HT increases BDNF in the cortex (Vaidya

et al. 1997), activation of 5-HT2 receptors in the hippocampus is ne-

cessary (Vaidya et al. 1999) and sufficient (Vaidya et al. 1997;

Fleshner et al. 2014) for stress-induced reductions in BDNF.

Therefore, constraint over 5-HT neural activity could help preserve

hippocampal-dependent memory even in the face of stress.

Together, these data suggest that constraint over stress-promoting

DRN 5-HT systems is a conserved effect of exercise that could con-

tribute to resistance against both stress-induced anxiety- and depres-

sion-like behavior, as well as impaired cognitive function.

Exercise not only attenuates activity of stress and anxiety-

promoting 5-HT systems, it also activates anxiolytic 5-HT systems.

Recording from DRN 5-HT neurons during physical activity in cats

and rats, Jacobs and Fornal demonstrated that 5-HT neuronal

activity is acutely responsive to exercise (Jacobs & Fornal 1993;

1997; 1999). These data led Jacobs and Fornal to hypothesize that

midbrain 5-HT neurons play a pivotal role in the control of move-

ment. A plethora of additional data, including 1 report in Anolis

carolinensis lizards (Emerson et al. 2000), are consistent with 5-HT

responding to acute exercise (Chaouloff 1989; Chaouloff et al.

1989; Dey et al. 1992; Bailey et al. 1993a). The majority of this

prior work, however, utilized forced running on a treadmill. Data

suggesting increases in 5-HT activity after voluntary exercise are

limited (Dishman 1997a). Voluntary wheel running elicits the big-

gest changes in gene expression in the rostral DRN (Greenwood

et al. 2005b), the region of the DRN most intimately connected with

the motor region of the basal ganglia (Steinbusch et al. 1981).

Interestingly, axons of some 5-HT neurons in the rostral DRN have

been reported to branch and project to both the basal ganglia and

the amygdala (Imai et al. 1986); thus, providing a potential site of

interplay between motor activity and emotional behavior within

the 5-HT system. Although there is limited evidence that repeated

activity of the 5-HT system during exercise is necessary for the

stress-protective effects of exercise, one study reported that deplet-

ing 5-HT with PCPA prevented the antidepressant-like effects of vol-

untary wheel running in the forced swim and tail suspension tests, 2

rodent models of depression-like behavior (Cunha et al. 2012).

Together, these data suggest that exercise recruits 5-HTsystems, but

whether exercise-induced activation is independent of an aversive

stress response and is selective to stress-protective populations of

DRN 5-HT neurons remains to be determined.

Potential Signals Communicating the Effects of
Exercise to the 5-HT System

It is not clear what signals drive the changes in the central 5-HT sys-

tem after exercise, but several top-down and bottom-up signaling pos-

sibilities are provided in Figure 1. One possibility is that repeatedly

choosing to exercise and exerting control over that exercise elicits

plasticity in prefrontal-cortical-striatal circuits capable of inhibiting

stress-promoting DRN 5-HT neurons during stress (Maier et al.

2006; Maier 2015). However, the observation that the protective
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effect of exercise occurs in rats with lesions of the prefrontal cortex

does not support this mechanism (Greenwood et al. 2013;

Christianson & Greenwood 2014). An additional scenario is commu-

nication between brain reward circuits and the serotonergic system.

Indeed, both voluntary (Lett et al. 2000; Greenwood et al. 2011) and

forced (Herrera et al. forthcoming) wheel running are rewarding and

activate central reward circuitry. Neurons in the nucleus accumbens

responding to rewarding stimuli could communicate with DRN 5-HT

neurons either through direct projections (Zhang et al. 2013) or

indirectly through the habenula (Hong & Hikosaka 2008). In add-

ition to these top-down exercise signals, 5-HT neurons could simply

respond to incoming motor-related sensory information and, as such,

be a primary player in driving motor activity, as hypothesized by

Jacobs and Fornal (1993). Repeated top-down recruitment of 5-HT

systems during exercise could then lead to plastic changes within

stress-promoting DRN 5-HT systems, which could contribute to the

constraint over their activity during stressor exposure. Future studies

are required to test this hypothesis.

In addition to responding to top-down exercise signals, DRN 5-HT

neurons could be signaled by peripheral, bottom-up factors such as the

vagus nerve, as well as growth factors. Similar to the sensitivity of LC

NE neurons to growth factors, BDNF receptor TrkB is expressed on

DRN 5-HT neurons (Madhav et al. 2001), and intra-DRN administra-

tion of BDNF altered firing patterns of DRN 5-HT neurons (Celada

et al. 1996). It is also possible that input from the LC drives the changes

in gene expression observed in the stress-promoting 5-HT system in re-

sponse to exercise. Noradrenergic projections from the LC to the DRN

target the rostral portion of the DRN most heavily (Peyron et al.

1996), and it is the rostral region of the DRN that shows the greatest

response to wheel running (Greenwood et al. 2005b).

An additional bottom-up signaling factor not previously discussed

is thermoregulation during exercise. Serotonergic neurons are part of

the central circuitry underlying thermoregulatory cooling (Lowry

et al. 2009; Madden & Morrison 2010). Increases in ambient heat,

core, and skin temperature activate DRN 5-HT neurons via the

spinal–parabrachial pathway (Hale et al. 2011). Notably, whereas

stress-promoting populations of DRN 5-HT neurons respond

minimally to warm temperature; the stress-protective regions of the

DRN include the temperature-sensitive 5-HT neuron population

(Hale et al. 2011, 2013). Activation of the stress-protective DRN by

increases in body temperature is consistent with emerging data sug-

gesting that increasing temperature is indeed anxiolytic and anti-

depressant (reviewed in Raison et al. 2014)). A small clinical trial in

adults diagnosed with major depressive disorder, for example, demon-

strated that whole-body hyperthermia can reduce depression symp-

toms (Hanusch et al. 2013). Moreover, human functional magnetic

resonance imagery studies reveal that feelings of pleasantness elicited

by warm (41 �C) cutaneous stimuli activates the mid-orbitofrontal

cortex, pregenual cingulate cortex, and the ventral striatum (Rolls

et al. 2008); areas that are dysregulated in depression (Drevets et al.

2008) and that receive 5-HT projections from the stress-protective

DRN (Van Bockstaele et al. 1993). These data support the hypothesis

proposed by Lowry & colleagues that function of the temperature-

sensitive, stress-protective DRN is impaired in depressed patients, and

successful antidepressant strategies restore function in this area

(Lowry et al. 2009; Hale et al. 2013; Raison et al. 2014). Consistent

with this idea are the observations that depressed patients have im-

paired thermoregulatory cooling (Ward & Doerr 1986), and a com-

mon “side effect” of antidepressant drugs is an increase in sweating

(i.e., thermoregulatory cooling; Marcy & Britton 2005). These data

allow the hypothesis that, similar to the acute antidepressant effect of

increases in temperature, the transient increase in temperature and

thermoregulatory cooling during exercise could be responsible for the

mood-enhancing effects of exercise by activating the temperature-sen-

sitive, stress-protective DRN. Indeed, data indicate that the tempera-

ture-sensitive DRN 5-HT neurons are responsive to exercise. In a

preliminary study, rats with a history of 6 weeks of access to running

wheels were sacrificed during the peak of their active cycle and immu-

nohistochemistry was used to measure the effect of acute exercise on

immediate early genes. Compared with rats housed with locked

wheels, chronic runners responded with an increase in FosB/DFosB in

5-HT neurons of the interfascicular DRN (Arnold 2015), one of the

regions responding most robustly to increases in temperature (Hale

et al. 2011; Hale et al. 2013). In summary, it is possible that either

top-down or bottom-up exercise signals including thermoregulation

could lead to the changes in gene expression observed in the central 5-

HT system after exercise, constraint over 5-HT neural activity, and

stress resistance.

Summary

Physical activity enhances cognitive function and improves stress re-

sistance and mental health. A variety of plastic changes contribute

to the effects of exercise, including structural changes within brain

circuits, enhanced neurotrophic support, neurogenesis, and modula-

tion of gene expression. Many of the effects of exercise on brain and

behavior are observed in a variety of species; suggesting ubiquitous

exercise signaling mechanisms that are conserved among verte-

brates. Longstanding and recent data are consistent with the idea

that the conserved monoamines NE and 5-HT could mediate the ef-

fects of exercise on brain circuits involved in cognition and stress.

NE and 5-HT systems are sensitive to both peripheral signals and

central neural circuits recruited during exercise; thus, they represent

important nodes of convergence between top-down and bottom-up

exercise signals. Exercise signals potentially targeting central mono-

aminergic systems include those originating from the periphery,

such as microbial products, myokines, adipokines, growth factors,

glucocorticoids, and temperature; as well as those originating from

within-brain circuits recruited during exercise such as primary

motor regions (cortex, basal ganglia, cerebellum), prefrontal–striatal

controllability circuits, reticular activating system-arousal centers,

reward circuits, and sensory-motor circuits involved in the cognitive

engagement occurring during exercise.

Considering the array of signals capable of recruiting NE and

5-HT systems during exercise, it is unlikely that any one of these

signals is going to be solely necessary for the beneficial impact of ex-

ercise on brain function and behavior. However, it is possible that

signals differ in their importance for mediating specific exercise ef-

fects. Information regarding which type, duration, and intensity of

exercise optimally recruit specific exercise signals could therefore be

potentially useful to tailor exercise programs to specific benefits.

Finally, one of the primary uses of exercise neuroscience research

could be as a tool to identify novel signals and targets that, although

most likely not solely necessary for exercise effects, could be suffi-

cient to act independently of exercise as cognitive enhancers or stress

prophylactic strategies.
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